首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Insecticides are an effective and practical tool for reducing malaria transmission but the development of resistance to the insecticides can potentially compromise controls efforts. In this study a mathematical model was developed to explore the effects on mosquito populations of spatial heterogeneous deployment of insecticides. This model was used to identify important parameters in the evolution of insecticide resistance and to examine the contribution of new generation long-lasting insecticidal bed nets, that incorporate a chemical synergist on the roof panel, in delaying insecticide resistance. METHODS: A genetic model was developed to predict changes in mosquito fitness and resistance allele frequency. Parameters describing insecticide selection, fitness cost and the additional use of synergist were incorporated. Uncertainty and sensitivity analysis were performed followed by investigation of the evolution of resistance under scenarios of fully effective or ineffective synergists. RESULTS: The spread of resistance was most sensitive to selection coefficients, fitness cost and dominance coefficients while mean fitness was most affected by baseline fitness levels. Using a synergist delayed the spread of resistance but could, in specific circumstances that were thoroughly investigated, actually increase the rate of spread. Different spread dynamics were observed, with simulations leading to fixation, loss and most interestingly, equilibrium (without explicit overdominance) of the resistance allele. CONCLUSIONS: This strategy has the potential to delay the spread of resistance but note that in an heterogeneous environment it can also lead to the opposite effect, i.e., increasing the rate of spread. This clearly emphasizes that selection pressure acting inside the house cannot be treated in isolation but must be placed in context of overall insecticide use in an heterogeneous environment.  相似文献   

2.
The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.  相似文献   

3.
细胞色素P450介导的昆虫抗药性的分子机制   总被引:4,自引:0,他引:4  
邱星辉 《昆虫学报》2014,57(4):477-482
细胞色素P450(简称P450) 对杀虫剂的代谢作用直接影响到昆虫对杀虫剂的耐受性和杀虫剂对昆虫的选择性,由P450介导的杀虫剂代谢解毒作用的增强是昆虫产生抗药性的常见而重要的机制。P450介导的杀虫剂代谢抗性具有普遍性、交互抗性与进化可塑性的特点,涉及P450基因重复与基因扩增、基因转录上调以及结构基因的变异等多样化的分子机制,并且多重机制的共同作用可以导致高水平抗药性。这些研究发现说明,无论是昆虫抗药性机制的研究,还是抗药性监测与治理都要有动态的、因地制宜的理念。  相似文献   

4.
The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines) encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.  相似文献   

5.
Intensive chemical treatments have led to the development of a number of insecticide resistance mechanisms in the peach-potato aphid Myzus persicae (Sulzer). Some of these mechanisms are known to be associated with negative pleiotropic effects (resistance costs). Molecular and biochemical methods were used to determine the genotypes or phenotypes associated with four insecticide resistance mechanisms in single aphids from sexually-reproducing populations in southern France. The mechanisms considered were E4 and FE4 carboxylesterase overproduction, modified acetycholinesterase, and kdr and rdl resistance-associated mutations. A new method for determining individual kdr genotypes is presented. Almost all resistant individuals overproduced FE4 carboxylesterase, whereas modified acetylcholinesterase was rare. Both the kdr and rdl resistance mutations were present at high frequencies in French sexually-reproducing populations. The frequencies of insecticide resistance genes were compared before and after sexual reproduction in one peach orchard at Avignon to evaluate the potential impact of selection on the persistence of resistance alleles in the over-wintering phase. The frequencies of the kdr and rdl mutations varied significantly between autumn and spring sampling periods. The frequency of the kdr mutation increased, probably due to pyrethroid treatments at the end of the winter. Conversely, the frequency of the rdl mutation decreased significantly during winter, probably because of a fitness cost associated with this mutation.  相似文献   

6.
Adaptive changes in populations encountering a new environment are often constrained by deleterious pleiotropic interactions with ancestral physiological functions. Evolutionary responses of populations can thus be limited by natural selection under fluctuating environmental conditions, if the adaptive mutations are associated with pleiotropic fitness costs. In this context, we have followed the evolution of the frequencies of insecticide-resistant mutants of Cydia pomonella when reintroduced into an untreated environment. The novel set of selective forces after removal of insecticide pressure led to the decline of the frequencies of resistant phenotypes over time, suggesting that the insecticide-adapted genetic variants were selected against the absence of insecticide (with a selective coefficient estimated at 0.11). The selective coefficients were also estimated for both the major cytochrome P450-dependent monooxygenase (MFO) and the minor glutathione S-transferase (GST) systems (0.17 and negligible, respectively), which have been previously shown to be involved in resistance. The involvement of metabolic systems acting both through xenobiotic detoxification and biosynthetic pathways of endogenous compounds may be central to explaining the deleterious physiological consequences resulting from pleiotropy of adaptive changes. The estimation of the magnitude of the fitness cost associated with insecticide resistance in C. pomonella suggests that resistance management strategies exclusively based on insecticide alternations would be unlikely to delay such a selection process.  相似文献   

7.
Codling moth granulovirus: a comprehensive review   总被引:1,自引:0,他引:1  
Codling moth (CM), Cydia pomonella (L), is regarded as the most serious insect pest of apple worldwide. A variety of problems associated with the traditional use of non-selective insecticides for its control include: untoward environmental effects, insecticide resistance, negative impacts on natural enemies, and safety for pesticide applicators and the food supply. Concerns about these consequences have increased the interest in and development of alternative means for CM control that have little or no impact on humans, beneficial organisms and sensitive ecosystems. An effective and selective alternative to chemical insecticides for CM control is the CM granulovirus (CpGV). The virus was first isolated in Mexico and subsequently studied and evaluated in Europe and North America. A variety of research including pathology, pathogenesis and histopathology of the virus, determination of virulence, development of production methods, field use, factors that influence efficacy, commercial development, formulation, and CM resistance to the virus has been conducted. Commercial products of CpGV are now produced in Europe and North America and used by orchardists worldwide. In this paper we present a comprehensive review of the CpGV literature and the role of the virus in integrated pest management.  相似文献   

8.
Bactrocera dorsalis (Hendel) is considered to be a highly invasive and destructive agricultural pest due to its strong dispersal and adaptive capacity. Rapid development of insecticide resistance poses a serious threat to the sustainable control of this pest. Here, the resistance mechanisms and invasion pathways of this fly are outlined for a better understanding of the resistance‐gene flow pattern and invasion routes. We believe this microreview will provide a glimpse of the native regions, spread and management of resistance, and guide future work on these important topics.  相似文献   

9.
Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles–Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions.  相似文献   

10.
Strategies to eradicate the vector-borne infectious diseases (e.g. malaria and Japanese encephalitis) are often directed at controlling vectors with insecticides. Spraying insecticide, however, opens the way for the development of insecticide resistance in vectors, which may lead to the failure of disease control. In this paper, we examine whether the combined use of insecticide spray and zooprophylaxis can limit the development of insecticide resistance in mosquitoes. Zooprophylaxis refers to the control of vector-borne diseases by attracting vectors to domestic animals in which the pathogen cannot amplify (a dead-end host). The human malaria parasite Plasmodium spp. has a closed transmission cycle between humans and mosquitoes, and hence cattle can serve as a dead-end host. Our model reveals that, by a suitable choice of insecticide spraying rate and cattle density and location, malaria can, in some situations, be controlled without mosquitoes developing insecticide resistance.  相似文献   

11.
Landscape-scale intensification of individual crops and pesticide use that is associated with this intensification is an emerging, environmental problem that is expected to have unequal effects on pests with different lifecycles, host ranges, and dispersal abilities. We investigate if intensification of a single crop in an agroecosystem has a direct effect on insecticide resistance in a specialist insect herbivore. Using a major potato pest, Leptinotarsa decemlineata, we measured imidacloprid (neonicotinoid) resistance in populations across a spatiotemporal crop production gradient where potato production has increased in Michigan and Wisconsin, USA. We found that concurrent estimates of area and temporal frequency of potato production better described patterns of imidacloprid resistance among L. decemlineata populations than general measures of agricultural production (% cropland, landscape diversity). This study defines the effects individual crop rotation patterns can have on specialist herbivore insecticide resistance in an agroecosystem context, and how impacts of intensive production can be estimated with general estimates of insecticide use. Our results provide empirical evidence that variation in the intensity of neonicotinoid-treated potato in an agricultural landscape can have unequal impacts on L. decemlineata insecticide insensitivity, a process that can lead to resistance and locally intensive insecticide use. Our study provides a novel approach applicable in other agricultural systems to estimate impacts of crop rotation, increased pesticide dependence, insecticide resistance, and external costs of pest management practices on ecosystem health.  相似文献   

12.
1  Myzus persicae is a highly polyphagous pest of U.K. agriculture. It presents particular control difficulties because it has developed resistance to several insecticide classes.
2 For almost 20 years, M. persicae collected in the U.K. suction trap network have been analysed for insecticide resistance and the data disseminated to growers via a resistance bulletin. These data are generated by the biochemical analysis of individuals for two major resistance phenotypes: (i) elevated carboxylesterase and (ii) modified acetylcholinesterase (MACE).
3 The development of new polymerase chain reaction (PCR)-based technologies using fluorescently labelled probes has allowed other resistance mechanisms, such as knockdown resistance to pyrethroids (kdr/super-kdr), to be detected and has greatly increased the speed and accuracy of resistance monitoring. Unfortunately, these newer PCR-based assays are incompatible with the older biochemical assays.
4 The present study describes the development and testing of new compatible methods for detecting elevated carboxylesterases and MACE for use on M. persicae caught in the field or suction traps.
5 These new tests have significant advantages over present methodologies by allowing individual aphids to be tested for three resistance mechanisms quickly and accurately on a single platform.  相似文献   

13.
The long term use of many insecticides is continually threatened by the ability of insects to evolve resistance mechanisms that render the chemicals ineffective. Such resistance poses a serious threat to insect pest control both in the UK and worldwide. Resistance may result from either an increase in the ability of the insect to detoxify the insecticide or by changes in the target protein with which the insecticide interacts. DDT, the pyrethrins and the synthetic pyrethroids (the latter currently accounting for around 17% of the world insecticide market), act on the voltage-gated sodium channel proteins found in insect nerve cell membranes. The correct functioning of these channels is essential for normal transmission of nerve impulses and this process is disrupted by binding of the insecticides, leading to paralysis and eventual death. Some insect pest populations have evolved modifications of the sodium channel protein which prevent the binding of the insecticide and result in the insect developing resistance. Here we review some of the work (done at Rothamsted Research and elsewhere) that has led to the identification of specific residues on the sodium channel that may constitute the DDT and pyrethroid binding sites.  相似文献   

14.
We develop a population genetics model for the northern corn rootworm, Diabrotica barberi Smith & Lawrence, to examine the effect of extended diapause on the evolution of resistance to transgenic Bacillus thuringiensis (Bt) corn, Zea mays L. We model conditions found in the center of the extended diapause problem along the Minnesota-South Dakota-Iowa borders. The proportion of resistance alleles in eggs oviposited after 15 simulated years is used to measure the evolution of resistance. Sensitivity analysis indicates that although population genetics parameters (fecundity, initial egg density, density-dependent larval survival, random mating, insecticide mortality, and gene expression) affect the evolution of resistance, product characteristics (e.g., Bt toxin dose) and farmer management practices (e.g., insecticide use on refuge corn and rotation pattern) generally have a larger impact on the development of resistance. Exceptions to this generalization exist: 1) if the resistance allele is dominant, resistance evolves quickly; 2) the level of random mating is an important determinant of how quickly resistance evolves for a theoretical high dose product; and 3) small differences in insecticide mortality imply large differences in resistance for medium- and low-dose products with high levels of Bt corn adoption and a predominance of 1- and 2-yr corn rotations. When extended diapause spreads into a new area, it typically reduces resistance to Bt corn, assuming Bt corn is used only on continuous corn. In the study region where extended diapause already exists, increasing extended diapause (increasing hatch rates after two or three winters while holding total hatch constant), tends to increase resistance because the resistance increasing effect of the hatch rate after two winters dominates the resistance decreasing effect of the hatch rate after three winters. However, this is not always the case, because combinations of rotation pattern, toxin dose, and soil insecticide use exist for which the net effect of extended diapause decreases resistance. Results are interpreted as a combination of two offsetting effects. First, extended diapause injects older alleles with lower resistance allele frequencies into the breeding population, which slows resistance. Second, extended diapause speeds the population's recovery from perturbations (reduces the undercompensating density dependence of population dynamics), which accelerates resistance.  相似文献   

15.
The global malaria situation, especially in Africa, and the problems frequently encountered in chemical control of vectors such as insecticide resistance, emphasize the urgency of research, development and implementation of new vector control technologies that are applicable at regional and local levels. The successful application of the sterile insect technique (SIT) for the control of the New World screwworm Cochliomyia hominivorax and several species of fruit flies has given impetus to the use of this method for suppression or elimination of malaria vectors in some areas of Africa including Northern State of Sudan. The research and development phase of the Northern State feasibility study has been started. Sudanese stakeholders are working side-by-side with the International Atomic Energy Agency in the activities of this important phase. Several ethical, legal and social issues associated with this approach arose during this phase of the project. They need to be seriously considered and handled with care. In this paper, these issues are described, and the current and proposed activities to overcome potential hurdles to ensure success of the project are listed.  相似文献   

16.
Molecular characterization of the insecticide resistance has become a hot research topic ever since the first disease transmitting arthropod (Anopheles gambiae) genome sequence has unveiled in 2002. A recent publication of the Culex quinquefasciatus genome sequence has opened up new opportunities for molecular and comparative genomic analysis of multiple mosquito genomes to characterize the insecticide resistance. Here, we utilized a whole genome sequence of Cx. quinquefasciatus to identify putatively active members of the detoxification supergene families, namely cytochrome P450s (P450s), glutathione-S-transferases (GSTs), and choline/carboxylesterases (CCEs). The Culex genome analysis revealed 166 P450s, 40 GSTs, and 62 CCEs. Further, the comparative genomic analysis shows that these numbers are considerably higher than the other dipteran mosquitoes. These observed speciesspecific expansions of the detoxification super gene family members endorse the popular understanding of the involvement of these gene families in protecting the organism against multitudinous classes of toxic substances during its complex (aquatic and terrestrial) life cycle. Thus, the generated data set may provide an initial point to start with to characterize the insecticide resistance at a molecular level which could then lead the development of an easy to use molecular marker to monitor the incipient insecticide resistance in field environs.  相似文献   

17.
Voltage gated sodium channels (VGSC) of mosquito vectors are the primary targets of dichlorodiphenyltrichloroethane (DDT) and other synthetic pyrethroids used in public health programmes. The knockdown resistant (kdr) mutations in VGSC are associated with the insecticide resistance especially in Anophelines. The present study is aimed to emphasize and demarcate the impact of three kdr-mutations such as L1014S, L1014F and L1014H on insecticide resistance. The membrane model of sodium transport domain of VGSC (STD-VGSC) was constructed using de novo approach based on domain and trans-membrane predictions. The comparative molecular modelling studies of wild type and mutant models of STD-VGSC revealed that L1014F mutant was observed to be near native to the wild type model in all the respects, but, L1014S and L1014H mutations showed drastic variations in the energy levels, root mean square fluctuations (RMSF) that resulted in conformational variations. The predicted binding sites also showed variable cavity volumes and RMSF in L1014S and L1014H mutants. Further, DDT also found be bound in near native manner to wild type in L1014F mutant and with variable orientation and affinities in L1014S and L1014H mutants. The variations and fluctuations observed in mutant structures explained that each mutation has its specific impact on the conformation of VGSC and its binding with DDT. The study provides new insights into the structure–function-correlations of mutant STD-VGSC structures and demonstrates the role and effects of kdr mutations on insecticide resistance in mosquito vectors.  相似文献   

18.
杀虫剂是害虫防治的有效途径之一,但随着杀虫剂长期和广泛的使用,昆虫种群对各种杀虫剂的敏感性降低,产生了抗药性,如何克服昆虫的抗药性是害虫综合治理的重要问题。近年来,借助基因组测序和遗传操作技术的发展,对昆虫抗药性的研究已经深入到细胞水平和分子水平,取得诸多重要的突破,为害虫抗性的控制奠定了理论基础。本文从常见杀虫剂的历史沿革及作用机理切入,从靶标抗性、代谢抗性和穿透抗性3个方面阐述了杀虫剂抗性产生的机制:杀虫剂作用位点的突变降低了靶标与杀虫剂的亲和力,细胞色素P450酶系和谷胱甘肽转移酶系的激活增加了杀虫剂的降解,表皮结构成分的变化和ABC转运蛋白的增加有效阻挡了杀虫剂的渗入。利用基因操作手段或抑制剂,对上述3种抗性机制的关键步骤进行调控可能成为未来杀虫剂抗性控制的新策略。  相似文献   

19.
Summary Many new technologies arrived at through basic research have practical applications. Two recent breakthroughs in microbiology, recombinant DNA techniques and hybridoma techniques, will permit designing cells for specific practical purposes resulting in new products or functions of commercial significance. The unique cell or its usefulness, or both, may satisfy the requirements of a patentable invention, i.e. an inventive act having utility and novelty. Ownership of such patents permits recovery of expenses incurred in the invention process and investment for all concerned in additional research. An integral part of the patenting process is submission of the new cell to an official repository, an outstanding example of which is The American Type Culture Collection.  相似文献   

20.
Dominance of Insecticide Resistance Presents a Plastic Response   总被引:2,自引:1,他引:1       下载免费PDF全文
D. Bourguet  M. Prout    M. Raymond 《Genetics》1996,143(1):407-416
Dominance level of insecticide resistance provided by one major gene (an insensitive acetylcholinesterase) in the mosquito Culex pipiens was studied in two distinct environments. Dominance level was found to be very different between environments, varying from almost complete dominance to almost recessive when either propoxur (a carbamate insecticide) or chlorpyrifos (an organophosphorus insecticide) was used. To better understand this plastic response, three environmental parameters were manipulated and their interactions studied. For chlorpyrifos, each parameter had a small effect, but when all parameters were changed, the dominance level was greatly affected. For propoxur, one environmental parameter had a large effect by itself. It was further studied to understand the causal relationship of this plasticity. Recessivity of resistance was associated with more demanding environments. These results are discussed in the context of the various theories of the evolution of dominance. It appears that dominance of insecticide resistance cannot be directly predicted by Wright's physiological theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号