首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) genes are expressed in the shoot apical meristem (SAM) to effect its formation and maintenance. KNOX1 genes are also involved in leaf shape control throughout angiosperm evolution. Leaves can be classified as either simple or compound, and KNOX1 expression patterns in leaf primordia are highly correlated with leaf shape; in most simple-leafed species, KNOX1 genes are expressed only in the SAM but not in leaf primordia, while in compound-leafed species they are expressed both in the SAM and leaf primordia. How can KNOX1 expression be maintained to a high degree in the SAM, but simultaneously be so variable in leaves? This dichotomy suggests that the processes of leaf and SAM development have been compartmentalized during evolution. Here, we introduce our findings regarding the regulation of expression of SHOOT MERISTEMLESS, a KNOX1 gene, together with a brief review of KNOX1 genes from an evolutionary viewpoint. We also present our findings regarding another aspect of KNOX1 regulation via a protein–protein interaction network involved in the natural variation in leaf shape. Both aspects of KNOX1 regulation could be utilized for fine-tuning leaf morphology during evolution without affecting the essential function of KNOX genes in the shoot.  相似文献   

4.
We investigated functional coordination between branch hydraulic properties and leaf functional traits among nine miombo woodlands canopy tree species differing in habitat preference and phenology. Specifically, we were seeking to answer the question: are branch hydraulic properties coordinated with leaf functional traits linked to plant drought tolerance in seasonally dry tropical forests and what are the implications for species habitat preference? The hydraulic properties investigated in this study were stem area specific hydraulic conductivity (K S), Huber value (H v), and xylem cavitation vulnerability (??50). The leaf functional traits measured were specific leaf area (SLA), leaf dry matter content (LDMC), and mean leaf area (MLA). Generalists displayed significantly (P?<?0.05) higher cavitation resistance (??50) and SLA, but lower sapwood specific hydraulic conductivity (K S), leaf specific conductivity (K L), MLA, and LDMC than mesic specialists. Although MLA was uncorrelated with ??50, we found significant (P?<?0.05) positive and negative correlations between plant hydraulic properties and leaf functional traits linked to plant drought tolerance ability, indicating that the interactions between branch hydraulics and leaf functional traits related to plant drought tolerance ability may influence tree species habitat preference in water-limited ecosystems.  相似文献   

5.
6.
Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm−2), increasing leaf P from 0.05 to 0.22 gm−2 nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.  相似文献   

7.
李茜  刘增文  米彩红 《生态学报》2012,32(19):6067-6075
通过采集树木枯落叶与土壤进行室内混合分解培养试验,研究了黄土高原常见的樟子松和落叶松与其他树种枯落叶混合分解对土壤性质的影响及存在的相互作用,从而为不同树木种间关系的探索和该地区人工纯林的混交改造提供科学指导。结果表明:12种枯落叶单一分解均明显提高了土壤脲酶(54%—110%)、脱氢酶(85%—288%)和磷酸酶(81%—301%)活性以及有机质(29%—55%)和碱解N(12%—49%)含量,但对土壤速效P含量和CEC的影响存在较大差异。综合而言,樟子松分别与白桦、刺槐、白榆、柠条和落叶松枯落叶混合分解在对土壤性质的影响中存在相互促进作用,而分别与小叶杨、沙棘、紫穗槐、侧柏和辽东栎枯落叶混合分解在对土壤性质的影响中存在相互抑制作用;落叶松分别与刺槐、白桦、小叶杨和紫穗槐枯落叶混合分解在对土壤性质的影响中存在相互促进作用,而分别与柠条、侧柏、辽东栎、沙棘、油松和白榆枯落叶混合分解在对土壤性质的影响中存在相互抑制作用。  相似文献   

8.
The European and American aspen species Populus tremula and P. tremuloides are closely related taxa with very large distribution ranges and high economic importance. Genetic and morphological data are not fully congruent with respect to the question of the systematic relatedness of these sister taxa, pointing either at separate species on the two continents or a single aggregate species with circumarctic distribution. In a replicated growth trial with 1-year-old saplings, we compared about 30 morphological (leaf size, leaf area, leaf numbers, leaf growth, leaf phenology and the ratio of leaves lost to leaves produced) and physiological traits (Amax, quantum yield, carboxylation efficiency, maximum rates of carboxylation and electron transport, leaf dark respiration, leaf conductance, leaf water potential and WUE) with the aim to obtain evidence in support of or against the one-species hypothesis and to identify key determinants of growth in the two aspen taxa.  相似文献   

9.
Styrax caporum is a native shrub from the Brazilian savanna. Most of its leaves are diaheliotropic, whereas some are paraheliotropic, mainly at noon. A previous study of this species revealed higher stomatal conductance (gs) and transpiration rates (E) in para- compared to diaheliotropic leaves, and a rise in CO2 assimilation rates (A) with an increase of irradiance for paraheliotropic leaves. We hypothesized that this species exploits the paraheliotropism to enhance the light use efficiency, and that it is detected only if gas exchange is measured with light interception by both leaf surfaces. Gas exchange was measured with devices that enabled light interception on only one of the leaf surfaces and with devices that enabled light interception by both leaf surfaces. Water relations, relative reflected light intensity, leaf temperature (Tl), and leaf anatomical analyses were also performed. When both leaf surfaces were illuminated, a higher A, E, and gs were observed in para- compared to diaheliotropic leaves; however, A did not depend on gs, which did not influence CO2 accumulation in the stomatal cavity (Ci). When only the adaxial leaf surface was illuminated, a greater A was detected for para- than for diaheliotropic leaves only at 11:00 h; no differences in Tl were observed between leaf types. Light curves revealed that under non-saturating light the adaxial side of paraheliotropic leaves had higher A than the abaxial side, but they showed similar values under saturating light. Although the abaxial leaf side was highly reflective, both surfaces presented the same response pattern for green light reflection, which can be explained by the compact spongy parenchyma observed in the leaves, increasing light use efficiency in terms of CO2 consumption for paraheliotropic leaves. We propose that paraheliotropism in S. camporum is not related to leaf heat avoidance or photoprotection.  相似文献   

10.
Alternaria leaf blight is one of the most common diseases in watermelon worldwide. In Korea, however, the Alternaria species causing the watermelon leaf blight have not been investigated thoroughly. A total of 16 Alternaria isolates was recovered from diseased watermelon leaves with leaf blight symptoms, which were collected from 14 fields in Korea. Analysis of internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and RNA polymerase II second largest subunit (RPB2) were not competent to differentiate the Alternaria isolates. On the contrary, analysis of amplicon size of the histone H3 (HIS3) gene successfully differentiated the isolates into three Alternaria subgroups, and further sequence analysis of them identified three Alternaria spp. Alternaria tenuissima, A. gaisen, and A. alternata. Representative Alternaria isolates from three species induced dark brown leaf spot lesions on detached watermelon leaves, indicating that A. tenuissima, A. gaisen, and A. alternata are all causal agents of Alternaria leaf blight. Our results indicate that the Alternaria species associated watermelon leaf blight in Korea is more complex than reported previously. This is the first report regarding the population structure of Alternaria species causing watermelon leaf blight in Korea.  相似文献   

11.
The theory of optimal leaf N distribution predicts that the C gain of plants is maximized when the N content per unit area (N area) scales with light availability, but most previous studies have demonstrated that the N distribution is not proportional to light availability. In tall trees, the leaves are often clustered on twigs (leaf cluster) and not evenly distributed within the crowns. Thus, we hypothesized that the suboptimal N distribution is partly caused by the limited capacity to translocate N between leaf clusters, and consequently, the relationship between light and N area differs for leaves in different clusters. We investigated the light availability and N content of all individual leaves within several leaf clusters on tall trees of a deciduous canopy species Fagus crenata in Japan. We observed that the within-cluster leaf N distribution patterns differed from the between-cluster patterns and the slopes of the relationships between light and N area were lower within clusters than between clusters. According to the detailed analysis of the N distribution within leaf clusters, N area was greater for current-year shoots with greater light availability or a larger total leaf area. The latter pattern was probably caused by the greater sink strength of the current-year shoots with a larger leaf area. These N distribution patterns suggest that leaf clusters are fairly independent with respect to their N use, and the productivity of real F. crenata crowns may be less than optimal.  相似文献   

12.
荆条叶性状对野外不同光环境的表型可塑性   总被引:3,自引:0,他引:3  
杜宁  张秀茹  王炜  陈华  谭向峰  王仁卿  郭卫华 《生态学报》2011,31(20):6049-6059
光照是影响植物生长和分布的重要环境因子。对生长在野外5种不同光环境下(林外、阔叶林林缘、阔叶林林下、针叶林林窗和针叶林林下)的荆条的叶片进行取样研究,通过对光合作用光响应曲线、叶绿素荧光、叶绿素含量、叶片氮磷含量以及叶片形态的测量,来反映荆条对不同光环境的表型可塑性。研究结果表明,荆条叶片对于野外不同的光环境具有很好的适应机制,叶片功能性状受到结构性状的调节。低光下通过高的比叶面积(SLA)、单位质量叶绿素含量、光系统II最大量子产量,低的暗呼吸速率、光饱和点、光补偿点、叶绿素a,b的比值来提高对光能的利用效率,维持生长;高光下则通过与SLA有关的叶片结构的变化对光合作用进行调节。大多数的叶性状只受到日光照总量的影响,SLA的大小与日最高光强有关,可以对不同日变化模式的光照做出迅速的响应,是适应不同光照的敏感指标。尽管光照是不同光环境下影响荆条叶性状的主要环境因子,土壤养分含量同样会对叶性状产生影响,高土壤养分下的高叶长与叶柄长的比值体现了植物对资源获取和支撑结构之间分配的权衡。  相似文献   

13.
Leaves are the main photosynthetic organs of vascular plants and show considerable diversity in their geometries, ranging from simple spoonlike forms to complex shapes with individual leaflets, as in compound leaves. Leaf vascular tissues, which act as conduits of both nutrients and signaling information, are organized in networks of different architectures that usually mirror the surrounding leaf shape. Understanding the processes that endow leaves and vein networks with ordered and closely aligned shapes has captured the attention of biologists and mathematicians since antiquity. Recent work has suggested that the growth regulator auxin has a key role in both initiation and elaboration of final morphology of both leaves and vascular networks. A key feature of auxin action is the existence of feedback loops through which auxin regulates its own transport. These feedbacks may facilitate the iterative generation of basic modules that underlies morphogenesis of both leaves and vasculature.Leaf form and vascular patterns provide some of the most impressive examples of the complexity of biological shapes generated in nature. A common feature of the development of the leaf lamina and vein networks is the repeated use of basic modules. For example, the iterative emergence of marginal leaf-shape elements, such as serrations, lobes, and leaflets (Fig. 1A–D), and the arrangement of successive orders of branched veins result in different types of leaf geometries and vascular patterns, respectively. Intriguingly, there is also congruence of leaf shape and vein layouts, such that, at least superficially, the pattern of vasculature formation is well aligned with the final geometry of the leaf lamina. These observations raise the questions of (1) what are the specific signaling pathways that sculpt leaf shape and vascular patterns, (2) to what degree lamina growth and vascular development share common genetic control, and finally (3) how coordination between leaf and vascular development is achieved and impacts on generation of final leaf shape and vein arrangement. Over the past 15 years, genetic approaches have led to substantial increase in our understanding of leaf and vascular development, and have provided good evidence that regulated activity of the small indolic growth regulator auxin provides important spatial cues for both processes. Such roles of auxin in different facets of leaf and vascular development is the focus of our article.Open in a separate windowFigure 1.Axes of leaf asymmetry and diversity of leaf shape. (A) A simple, serrated leaf of the Columbia ecotype of Arabidopsis thaliana. The proximo–distal (P–D) and medio–lateral (M–L) axes are indicated in the image. The asterisk marks one marginal serration. (B) The lobed leaf of the Arabidopsis thaliana relative Arabidopsis lyrata. The asterisk depicts the position of one lobe. Lobes are deep serrations, so the definition of an outgrowth as a serration or lobe is somewhat arbitrary. (C) The dissected leaf of Cardamine hirsuta. The asterisk marks a lateral leaflet. Leaflets are clearly defined as distinct units of the same leaf, which connect with the rachis (R) via a structure called a petiolule (Pu). (D) The dissected leaf of the cultivated tomato. Tomato demonstrates additional orders of dissection with respect to Cardamine hirsuta leaf and produces both primary leaflets (black asterisk) and secondary leaflets (red asterisk). (E) Scanning electron micrograph of the shoot apex of tomato. The white asterisk marks a leaf primordium (1) initiating from the meristem. The adaxial (yellow) and abaxial (orange) domains are marked on the subsequent developing leaf (2). Tomato is a compound leaf plant where leaflets are formed from the leaf blade soon after leaf initiation (a developing leaflet is marked by an arrow in leaf 3). Images in panels AD are leaf silhouettes. Scale bars: (AD) 1 cm, (E) 100 µm.  相似文献   

14.

Background and Aims

The major objective was to identify plant traits functionally important for optimization of shoot growth and nitrogen (N) economy under drought. Although increased leaf N content (area basis) has been observed in dry environments and theory predicts increased leaf N to be an acclimation to drought, experimental evidence for the prediction is rare.

Methods

A pedigree of 200 full-sibling hybrid willows was pot-grown in a glasshouse in three replicate blocks and exposed to two water regimes for 3 weeks. Drought conditions were simulated as repeated periods of water shortage. The total leaf mass and area, leaf area efficiency (shoot growth per unit leaf area, EA), area-based leaf N content (NA), total leaf N pool (NL) and leaf N efficiency (shoot growth per unit leaf N, EN) were assessed.

Key Results

In the water-stress treatment, shoot biomass growth was N limited in the genotypes with low NL, but increasingly limited by other factors in the genotypes with greatest NL. The NA was increased by drought, and drought-induced shift in NA varied between genotypes (significant G × E). Judged from the EANA relationship, optimal NA was 16 % higher in the water-stress compared with the well-watered treatment. Biomass allocation to leaves and shoots varied between treatments, but the treatment response of the leaf : shoot ratio was similar across all genotypes.

Conclusions

It is concluded that N-uptake efficiency and leaf N efficiency are important traits to improve growth under drought. Increased leaf N content (area basis) is an acclimation to optimize N economy under drought. The leaf N content is an interesting trait for breeding of willow bioenergy crops in a climate change future. In contrast, leaf biomass allocation is a less interesting breeding target to improve yield under drought.  相似文献   

15.
华南地区6种阔叶幼苗叶片形态特征的季节变化   总被引:5,自引:0,他引:5  
对山杜英、米老排、樟树、海南红豆、红花油茶和红锥6种幼苗叶长和叶宽的相关性和叶片的比叶重变化进行了研究,结果表明:幼苗各月份的叶长和叶宽呈极显著正相关。根据相关系数把6种幼苗分为:a),叶长和叶宽的相关性随季节变化型,包括山杜英、红花油茶、海南红豆、红锥;b),叶长和叶宽的相关性稳定型,有樟树和米老排。6种幼苗叶片的比叶重随幼苗种类和季节而变化,新叶的比叶重上半年比下半年变化大,老叶全年变化较小,上半年新叶的比叶重比老叶低,下半年两者相近。红花油茶新叶和老叶的平均比叶重明显大于其余5种幼苗。  相似文献   

16.

Key message

A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton.

Abstract

Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L o ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.  相似文献   

17.
Peanut (Arachis hypogaea L.) is the sixth most important oil seed crop in the world. Yield loss due to Cercospora leaf spot (early and late leaf spots) is a serious problem in cultivating this crop. Non-availability of resistant genes within crossable germplasms of peanut necessitates the use of a genetic engineering strategy to develop genetic resistance against various biotic stresses. The pathogenesis-related (PR) proteins are a group of plant proteins that are toxic to invading fungal pathogens, but are present in trace amounts in plants. The PR proteins, PR-5 and defensins, are potent antifungal proteins. A double gene construct with SniOLP (Solanum nigrum osmotin-like protein) and Rs-AFP2 (Raphanus sativus antifungal protein-2) genes under separate constitutive 35S promoters was used to transform peanut plants. Transgenic peanut plants expressing the SniOLP and Rs-AFP2 genes showed enhanced disease resistance to late leaf spot based on a reduction in number and size of lesions on leaves and delay in the onset of Phaeoisariopsis personata leaf spot disease. PCR, RT–PCR, and Southern hybridization analyses confirmed stable integration and expression of these genes in peanut transgenics. The results demonstrate the potential of SniOLP and Rs-AFP2 genes in developing late leaf spot disease resistance in transgenic peanut.  相似文献   

18.
The ethnobotanical uses of wild olive, O. europaea subsp. africana (sometimes referred to as subsp. cuspidata) in southern Africa and in other parts of Africa are reviewed. Chromatographic analyses of secoiridoids (oleuropein and other oleuropeosides) in 25 wild olive leaf samples from 10 localities in South Africa showed substantial amounts of oleuropein (up to 110 mg/g dry weight) and not trace amounts as reported in the literature. Oleuropein is the main active compound in olive leaf, with demonstrated anti-oxidant, anti-microbial, hypolipidemic and hypotensive activities. A comparison with nine cultivated olive leaf samples (subsp. europaea) from six cultivars and two localities showed that commercial olive leaf can be distinguished by the presence of verbascoside, which is absent in wild olive. Extraction methods and solvent systems (TLC and HPLC) were compared, using pure oleuropein (isolated from wild olive leaf and identified by NMR) as an authentic reference sample. The unique peltate scales on the leaves are useful to identify olive leaf raw material (but are the same in both subspecies). The main conclusion is that wild olive leaf is chemically closely similar to cultivated olive leaf and therefore suitable as an alternative source of raw material for olive leaf extract.  相似文献   

19.
The adaxial-abaxial axis in leaf primordia is thought to be established first and is necessary for the expansion of the leaf lamina along the mediolateral axis. To understand axis information in leaf development, we isolated the adaxialized leaf1 (adl1) mutant in rice, which forms abaxially rolled leaves. adl1 leaves are covered with bulliform-like cells, which are normally distributed only on the adaxial surface. An adl1 double mutant with the adaxially snowy leaf mutant, which has albino cells that specifically appear in the abaxial mesophyll tissue, indicated that adl1 leaves show adaxialization in both epidermal and mesophyll tissues. The expression of HD-ZIPIII genes in adl1 mutant increased in mature leaves, but not in the young primordia or the SAM. This indicated that ADL1 may not be directly involved in determining initial leaf polarity, but rather is associated with the maintenance of axis information. ADL1 encodes a plant-specific calpain-like cysteine proteinase orthologous to maize DEFECTIVE KERNEL1. Furthermore, we identified intermediate and strong alleles of the adl1 mutant that generate shootless embryos and globular-arrested embryos with aleurone layer loss, respectively. We propose that ADL1 plays an important role in pattern formation of the leaf and embryo by promoting proper epidermal development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号