首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jonas Dahl 《Oecologia》1998,117(1-2):217-226
I assessed the impact of both vertebrate and invertebrate predators on a lotic benthic community in a 1-month-long experiment, using enclosures containing cobble/gravel bottoms, with large-mesh netting that allowed invertebrates to drift freely. Brown trout (Salmo trutta) and leeches (Erpobdella octoculata) were used as predators and four treatments were tested: a predator-free control, leeches only, trout only, and leeches and trout together. A density of 26.7 leeches/m2 (20 leeches/enclosure) and 1.3 trout/m2 (one trout per enclosure) was stocked into the enclosures. The total biomass of invertebrate prey was significantly lower in the trout and trout plus leech treatments than in the leech and control treatments, which were due to strong negative effects of trout on Gammarus. On the individual prey taxon level, both trout and leeches affected the abundance of Asellus , Baetis and Ephemerella, whereas the abundance of Gammarus was only affected by trout, and the abundance of Orthocladiinae and Limnephilidae was only affected by leeches. In the treatment with trout and leeches together, the abundance of Ephemerella and Baetis was higher than when trout or leeches were alone, which was probably due to predator interactions. Leeches and trout had no effects on prey immigration but did affect per capita emigration rates. Both trout and leeches indirectly increased periphyton biomass in enclosures, probably due to their strong effects on grazers. Both trout and leeches were size-selective predators, with trout selecting large prey, and leeches selecting small prey. Size-selective predation by trout and leeches affected the size structure of five commonly consumed prey taxa. Trout produced prey populations of small sizes owing to consumption of large prey as well as increased emigration out of enclosures by these large prey. Leech predation produced prey assemblages of larger size owing to consumption and increased emigration of small prey. These results suggest that in lotic habits, predatory invertebrates can be as strong interactors as vertebrate predators. Received: 23 June 1997 / Accepted: 4 May 1998  相似文献   

2.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

3.
The acquisition of sensory information by animals is central to species interactions. In aquatic environments, most taxa use chemical cues to assess predation risk and other key ecological factors. A number of laboratory studies suggest that anthropogenic pollutants can disrupt chemoreception, even when at low, non-toxic concentrations, but there are few tests of whether real-world variation in water quality affects chemoreception. Here we investigate whether chemosensory perception of predators by the gray treefrog, Hyla versicolor, depends on water quality. We evaluated the anti-predator response of anuran tadpoles housed in water collected from three sites that represent strong contrasts in the concentration and types of dissolved solids: de-chlorinated tap water, water from an impaired stream, and treated wastewater effluent. Behavioral assays were conducted in laboratory aquaria. Chemical cues associated with predation were generated by feeding tadpoles to dragonfly predators held in containers, and then transferring aliquots of water from dragonfly containers to experimental aquaria. Tadpoles housed in tap water responded to predator cues with an activity reduction of 49%. Tadpoles housed in stream water and wastewater effluent responded to predator cues by reducing activity by 29% and 24% respectively. The results of factorial ANOVA support the hypothesis that the response to predator cues depended on water type. These results show that alteration of the chemical environment can mediate chemical perception of predators in aquatic ecosystems. Because most aquatic species rely on chemoreception to gather information on the location of food and predators, any impairment of sensory perception likely has important ecological consequences.  相似文献   

4.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

5.
Waterborne chemical cues are an important source of information for many aquatic organisms, in particular when assessing the current risk of predation. The ability to use chemical cues to detect and respond to potential predators before an actual encounter can improve prey chances of survival. We investigated predator recognition and the impact of chemical cues on predator avoidance in the freshwater isopod Asellus aquaticus. This isopod has recently colonised a novel habitat and diverged into two distinct ecotypes, which encounter different predator communities. Using laboratory-based choice experiments, we have quantified behavioural responses to chemical cues from predators typical of the two predator communities (larval dragonflies in the ancestral habitat, perch in the newly colonised habitat) in wild-caught and lab-reared Asellus of the two ecotypes. Individuals with prior experience of predators showed strong predator avoidance to cues from both predator types. Both ecotypes showed similar antipredator responses, but sexes differed in terms of threat-sensitive responses with males avoiding areas containing predator cues to a larger extent than females. Overall, chemical cues from fish elicited stronger predator avoidance than cues from larval dragonflies. Our results indicate that in these isopods, prior exposure to predators is needed to develop antipredator behaviour based on waterborne cues. Furthermore, the results emphasise the need to analyse predator avoidance in relation to waterborne cues in a sex-specific context, because of potential differences between males and females in terms of vulnerability and life history strategies.  相似文献   

6.
1. We investigated the individual and combined effects of two predators (the climbing perch, Anabas testudineus, and the wetland crab, Esanthelphusa nimoafi) indigenous to wetlands in Laos, on the behaviour and survival of the invasive South American golden apple snail (Pomacea canaliculata). The snail is considered a pest, consuming large amounts of rice and other aquatic vegetation in the region. 2. Snail avoidance reactions to released predator chemical cues were investigated in aquaria while the effects of predators on a mixed snail population were studied in field enclosures that contained native aquatic plants (Salvinia cucullata, Ludwigia adscendens and Ipomoea aquatica). 3. In the aquaria experiment, neonate (2–3 mm) and medium‐sized snails (8–10 mm) responded to fish chemical cues by going to the surface, whereas adult snails (35–40 mm) went to the bottom. In contrast, no size class of snails reacted to chemical cues released by crabs. 4. In the field experiment, fish reduced the abundance of neonate snails, and crabs reduced the abundance of all size classes. The effect of the combined predators could not be predicted from the mortality rate observed in single predator treatments. The survival of neonate and medium‐sized snails was greater and of adults less than expected. The presence of predators did not affect egg production. Snails consumed significant amounts of plants despite the presence of predators. 5. Our findings suggest that some indigenous Asian predators have lethal and sublethal effects on P. canaliculata that depend on snail size and predator type. When in the presence of several predators the response of snails to one predator may either increase or decrease the vulnerability of snails to the others.  相似文献   

7.
Although the abilities of prey to detect and respond to chemical substances associated with a predator have been widely reported, the factors promoting the evolution of responses to prey alarm cues vs. predator odours are still vague. In this article, we combined field research with laboratory experiments to explore which chemical substance associated with predator activity (predator odour, conspecific or heterospecific alarm substances) induces defence responses in the aquatic oligochaete Stylaria lacustris, which is vulnerable to common littoral predators. The field results indicated that predators injure the oligochaetes and a great proportion, up to 45% of individuals in the population, were found to be damaged. The results of the laboratory experiments revealed that chemical odours from damselfly larvae feeding on S. lacustris did not induce the defence response in the oligochaetes. On the contrary, oligochaetes detected and responded to alarm substances from damaged conspecifics alone and substances from damaged cladoceran Daphnia magna. We discussed conditions favouring the responses to damage released prey alarm cues instead of predator odours in Stylaria lacustris. Our data suggest that the selection of responses to alarm cues from damaged prey vs. predator odours may be dependent on three factors: (1) non-species-specific predation, (2) divergence of food niche of the different stages of the predator and (3) complex food web with multiple predators. Handling editor: S. Declerk  相似文献   

8.
The ability of prey to detect and adequately respond to predation risk influences immediate survival and overall fitness. Chemical cues are commonly used by prey to evaluate risk, and the purpose of this study was to elicit the nature of cues used by prey hunted by generalist predators. Nucella lapillus are common, predatory, intertidal snails that evaluate predatory risk using chemical cues. Using Nucella and a suite of its potential predators as a model system, we explored how (1) predator type, (2) predator diet, and (3) injured conspecifics and heterospecifics influence Nucella behavior. Using laboratory flumes, we determined that Nucella responded only to the invasive green crab (Carcinus maenas), the predator it most frequently encounters. Nucella did not respond to rock crabs (Cancer irroratus) or Jonah crabs (Cancer borealis), which are sympatric predators but do not frequently encounter Nucella because these crabs are primarily subtidal. Predator diet did not affect Nucella responses to risk, although starved predator response was not significantly different from controls. Since green crabs are generalist predators, diet cues do not reflect predation risk, and thus altering behavior as a function of predator diet would not likely benefit Nucella. Nucella did, however, react to injured conspecifics, a strategy that may allow them to recognize threats when predators are difficult to detect. Nucella did not react to injured heterospecifics including mussels (Mytilus edulis) and herbivorous snails Littorina littorea, suggesting that they are responding to chemical cues unique to their species. The nature of cues used by Nucella allows them to minimize costs associated with predator avoidance.  相似文献   

9.
Interactions between predators foraging in the same patch may strongly influence patch use and functional response. In particular, there is continued interest in how the magnitude of mutual interference shapes predator–prey interactions. Studies commonly focus on either patch use or the functional response without attempting to link these important components of the foraging puzzle. Predictions from both theoretical frameworks suggest that predators should modify foraging efforts in response to changes in feeding rate, but this prediction has received little empirical attention. We study the linkage between patch departure rates and food consumption by the hunting spider, Pardosa milvina, using field enclosures in which prey and predator densities were manipulated. Additionally, the most appropriate functional response model was identified by fitting alternative functional response models to laboratory foraging data. Our results show that although prey availability was the most important determinant of patch departure rates, a greater proportion of predators left enclosures containing elevated predator abundance. Functional response parameter estimation revealed significant levels of interference among predators leading to lower feeding rates even when the area allocated for each predator was kept constant. These results suggest that feeding rates determine patch movement dynamics, where interference induces predators to search for foraging sites that balance the frequency of agonistic interactions with prey encounter rates.  相似文献   

10.
11.
Invasive species capable of recognizing potential predators may have increased establishment rates in novel environments. Individuals may retain historical predator recognition and invoke innate responses in the presence of taxonomically or ecologically similar predators, generalize antipredator responses, or learn to avoid risky species in novel environments. Invasive amphibians in aquatic environments often use chemical cues to assess predation risk and learn to avoid novel predators via direct experience and/or associated chemical cues. Ontogeny may also influence recognition; experience with predators may need to occur at certain developmental stages for individuals to respond correctly. We tested predator recognition in invasive American bullfrog ( Lithobates catesbeianus) tadpoles that varied in experience with fish predators at the population and individual scale. We found that bullfrog tadpoles responded to a historical predator, largemouth bass ( Micropterus salmoides), only if the population was locally sympatric with largemouth bass. Individuals from a population that did not co‐occur with largemouth bass did not increase refuge use in response to either largemouth bass chemical cues alone or chemical cues with diet cues (largemouth bass fed bullfrog tadpoles). To test whether this behavioral response was generalized across fish predators, we exposed tadpoles to rainbow trout ( Oncorhynchus mykiss) and found that tadpoles could not recognize this novel predator regardless of co‐occurrence with other fish species. These results suggest that environment may be more important for predator recognition than evolutionary history for this invasive species, and individuals do not retain predator recognition or generalize across fish predators.  相似文献   

12.
Luisa Amo 《Animal behaviour》2004,67(4):647-653
The threat sensitivity hypothesis assumes that multiple cues from a predator should contribute in an additive way to determine the degree of risk-sensitive behaviour. The ability to use multiple cues in assessing the current level of predation risk should be especially important to prey exposed to multiple predators. Wall lizards, Podarcis muralis, respond to predatory attacks from birds or mammals by hiding inside rock crevices, where they may encounter another predator, the smooth snake, Coronella austriaca. We investigated in the laboratory whether chemical cues may be important to wall lizards for detection of snakes. The greater tongue-flick rate and shorter latency to first tongue-flick in response to predator scents indicated that lizards were able to detect the snakes' chemical cues. We also investigated the use of different predatory cues by lizards when detecting the presence of snakes within refuges. We simulated successive predator attacks and compared the propensity of lizards to enter the refuge and time spent within it for predator-free refuges, refuges containing either only visual or chemical cues of a snake, or a combination of these. The antipredatory response of lizards was greater when they were exposed to both visual and chemical cues than when only one cue was presented, supporting the threat sensitivity hypothesis. This ability may improve the accuracy of assessments of the current level of predation risk inside the refuge. It could be especially important in allowing lizards to cope with threats posed by two types of predators requiring conflicting prey defences.  相似文献   

13.
Predation imposes selection on the ability of prey to recognize and respond to potential threats. Many prey species detect predators via chemoreception, particularly in aquatic environments. Also, chemical cues from injured prey are often perceived as an indication of predation risk. However, because antipredatory behavior can be costly, prey responses should depend on the current level of risk that each predator poses, which may depend on the type of chemical cues detected. We exposed larval newts, Triturus pygmaeus, to chemical cues from predator larval beetles or to alarm cues from conspecific larval newts and examined the behavioral changes of larval newts. Results showed that larval newts reduced activity levels when conspecific alarm cues were present but not when the predator cues alone were present. These results might suggest that larval newts are unable to recognize predator chemicals. To avoid costs of unnecessary antipredatory behaviors, larval newts may benefit by avoiding only predators that represent a current high level of threat, showing only antipredatory responses when they detect conspecific alarm cues indicating that an actual predatory attack has occurred.  相似文献   

14.
In two laboratory experiments, we examined short- and long-term responses of the detritivorous amphipod Gammarus pulex to chemical cues from potential predators fed various diets. In the first experiment we studied the short-term effect on G. pulex (locomotory activity) when exposed to chemical cues from three co-existing predators; sculpin (Cottus gobio), trout (Salmo trutta), and signal crayfish (Pacifastacus leniusculus). Chemicals from sculpins and trout induced a short-term decrease in locomotory activity in G. pulex, whereas crayfish did not. There was no difference in activity between G. pulex exposed to water scented by trout or sculpin, and these responses were independent of predator diet (G. pulex, Asellus aquaticus and starved). In the second experiment we examined whether longer-term exposure (4 week) to chemical cues from sculpins affects rates of leaf processing by G. pulex. During the first week, G. pulex consumed significantly more leaves in the control (i.e., no fish cue) than in the fish cue treatment. After 4 weeks, however, there was no difference in total leaf processing rate between treatments indicating an adaptation to the cue.  相似文献   

15.
覃光球  卢豪良  唐振柱  赵鹏  白雪涛  彭亮 《生态学报》2014,34(10):2481-2489
捕食信息素是捕食者释放的,能够引发猎物反捕食反应的化学信号。在水生生态系统中,捕食信息素在捕食者和猎物之间信息传递及协同进化过程中发挥着重要的作用,其生态学效应在国际上受到广泛关注。捕食信息素的来源有多种形式,研究中常使用养殖过捕食者的水溶液作为捕食信息素的来源。捕食信息素的作用效果受到捕食者和猎物的种类、信息素的浓度、观察的指标等多方面因素的影响。捕食信息素可以对水生生物的行为、形态和生活史特征等方面造成影响。水生生物通过感知捕食信息素来提前预知潜在的被捕食风险,并作出适应性调整,以降低被捕食的风险。在某些情况下,捕食信息素可以与污染物产生交互作用,从而干扰污染物对水生生物的毒性。对水生环境中捕食信息素的研究现状做了综述,介绍了当前对捕食信息素来源和理化性质等本质问题的认识,总结捕食信息素对水生生物行为、形态和生活史特征的影响,以及捕食信息素对污染物毒性的干扰,并分析了这一研究领域尚存在的困难和今后的研究方向。加强对捕食信息素的研究,将为解析水生环境中捕食者和猎物的生态关系提供新依据。  相似文献   

16.
Larvae of some species of damselflies respond to chemical cues of fish predators but, while larvae of many species are thought to detect prey through vision, there is little evidence that larvae respond to visual cues of predator presence. This laboratory study indicated larval Ischnura verticalis behaviours are affected by visual cues and, to a much lesser extent, chemical cues of fish; there was no significant interaction between the effects of visual and chemical cues. Responses to chemical cues of fish did not depend on whether fish were fed I. verticalis larvae versus commercial fish food. Larvae were more active in the spring than the fall when they were likely in diapause. Results suggest larvae can use vision to detect large, active predators but can also detect predators through olfaction when visual cues are unreliable.  相似文献   

17.
Soft-shell clams, Mya arenaria, are sessile, suspension-feeding bivalves that are preyed upon by the exotic green crab, Carcinus maenas. Clams evade crab consumers by burrowing deeper into the sediment after perceiving a threat from a nearby predator. The purpose of this study was to determine the types of signals that M. arenaria use to detect predators and the types of behaviors clams use to avoid being eaten. In a field study, clams increased their burial depth in the presence of green crab predators consuming conspecifics that were caged nearby, and also increased burial depth after artificial tactile stimulation in the laboratory assay. These results indicate that clams can use chemical and mechanical cues to detect potential predatory threats. We performed a field study to examine the difference in survivability of clams that had burrowed deeper into the sediment in response to predators vs. control clams that were burrowed less deeply. Significantly higher survival rates were observed in clams that had initially burrowed more deeply, suggesting that increasing burial depth is a valid predator avoidance strategy. Some bivalves also alter their pumping rates in the presence of predators, making them less apparent and providing more structural defense by covering soft tissue, and we measured pumping time of soft-shell clams in the presence and absence of predators, when burrowing was not an option for escape. Soft-shell clams did not alter their pumping time in the presence of green crab predators, possibly because they employ a burrowing method called “hydraulic” or “jet-propelled” burrowing, where it is necessary for the clam to pump in order to burrow. Chemical signals and tactile cues instigated behavioral changes in M. arenaria, and this change in behavior (increasing burial depth) increased clam survival in the field.  相似文献   

18.
Predators can simultaneously have lethal (consumption) and non-lethal (modification of traits) effects on their prey. Prey escape or fleeing from potential predators is a common form of a non-lethal predator effect. The efficiency of this response depends on the prey's ability to detect and correctly identify its predator far enough to increase the probability of successful escape, yet short enough to allow it to allocate time to other activities (e.g. foraging). In this study, we characterized the non-lethal effect of the sun star Heliaster helianthus on the black sea urchin Tetrapygus niger by assessing the nature of predator detection and the spatial scale involved both in predator detection and in the escape response. Through field and laboratory experiments we demonstrate that T. niger detects chemical cues released by H. helianthus. In the laboratory, these chemical signals can be detected at distances of up to about 50 cm. In the field, the distance traveled by urchins when escaping, after recognition of the predation risk, was also restricted to about 40 cm. Thus, considering the sizes of the predator and prey, the spatial scale of both detection and escape is comparatively small suggesting that non-lethal effects of H. helianthus (e.g. how it modifies the behavior of T. niger) should be important at local spatial scales and highly variable at the landscape scale.  相似文献   

19.
Climate change is likely to increase the metabolisms of ectothermic animals living below their thermal optimum. While ectothermic top predators may compensate by increasing foraging, ectothermic prey may be unable to increase foraging because of increased predation risk from ectothermic predators. We examined how the diurnal drift behavior (i.e., the downstream movement associated with foraging) of the mayfly Baetis, an ectothermic herbivore, responds to changing temperature in the implied presence and absence of trout, an ectothermic predator. In an experiment replicated at the catchment scale, water temperature and trout presence strongly interacted to affect the diurnal drift of Baetis from artificial channels lacking periphyton over a water temperature range of 4.2–14.8 °C. In fishless streams, daytime drift increased with increasing water temperature, likely because of increased metabolic demand for food. However, in trout-bearing streams, daytime drift decreased with increasing water temperature. Our interpretation is that the perceived threat of trout rose with increasing water temperature, causing mayflies to reduce foraging despite heightened metabolic demand. These results suggest that anticipated increases in stream temperature due to climate change may further escalate divergence in structure and process between fishless and trout-bearing streams. Similar dynamics may occur in other ecosystems with ectothermic predators and prey living below their thermal optima.  相似文献   

20.
Predators use a variety of information sources to locate potential prey, and likewise prey animals use numerous sources of information to detect and avoid becoming the meal of a potential predator. In freshwater environments, chemosensory cues often play a crucial role in such predator/prey interactions. The importance of chemosensory information to teleost fish in marine environments is not well understood. Here, we tested whether coral reef fish predators are attracted to damage-released chemical cues from already wounded prey in order to find patches of prey and minimize their own costs of obtaining food. Furthermore, we tested if these chemical cues would convey information about status of the prey. Using y-maze experiments, we found that predatory dottybacks, Pseudochromis fuscus, were more attracted to skin extracts of damselfish, Pomacentrus amboinensis, prey that were in good condition compared to prey in poor body condition. Moreover, in both the laboratory and field, we found that predators could differentiate between skin extracts from prey based on prey size, showing a greater attraction to extracts made from prey that were the appropriate size to consume. This suggests that predators are not attracted to any general substance released from an injured prey fish instead being capable of detecting and distinguishing relatively small differences in the chemical composition of the skin of their prey. These results have implications for understanding predator foraging strategies and highlights that chemical cues play a complex role in predator–prey interactions in marine fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号