首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
No other group of insects have been more successful in colonizing marine habitats than water striders and their allies (Heteroptera, Gerromorpha). More than 10% of the 1700 species of gerromorphan bugs are marine. Water striders have colonized the marine environment at least 14 times. The fossil records suggest that marine habitats were invaded by members of the families Veliidae and Gerridae earlier than 20-30 and 45 million years before present, respectively. Estuaries and mangrove swamps are undoubtedly the ancestral type of habitat, but water striders have diversified further in marine habitats including the surface of the open ocean (sea skaters. Halobates). Except for being obligatorily flightless, marine water striders are structurally very similar to their non-marine relatives. Physiological and behavioral rather than morphological specializations are likely to have been key innovations in the transition from limnic to marine habitats. The oldest and most species-rich clades originated in the Indo-West Pacific region. There are 3.5 times as many species of marine water striders in the Indo-West Pacific region than in the Atlantic/Caribbean/East Pacific region. This "diversity anomaly" is explained historically by region-specific differences in the origin and proliferation of clades, in paleoclimate and paleogeography, and in the propensity for dispersal between regions.  相似文献   

2.
Global diversity gradients have been extensively investigated for several biological groups. However, little is known whether the diversity drivers of clades that underwent major environmental transition (e.g., from land to sea) are equivalent across these different environmental settings. Here, we ask if the pattern of diversity of marine elapid snakes is determined by factors analogous to those previously found for terrestrial lineages. Through a model selection framework, we compare the effect of factors that represent five ecological and historical hypotheses. We found that both ecological and historical factors play significant roles, but habitat structure, which can be linked to historical climatic changes, was better supported. This result agrees with that previously found for terrestrial elapids, despite the different environmental pressures in terrestrial and marine contexts. Our findings suggest an equivalence of the underlying process of diversity gradient within the same lineage from land and sea, irrespective of the different physiological, spatial and historical constraints.  相似文献   

3.
The Indo‐Australian archipelago (IAA) supports the world's highest diversity of marine fish, invertebrates and reptiles. Many of the marine fish and invertebrates show congruent phylogeographic patterns, supporting a view that the region's complex geo‐climatic history has played an important role in generating its exceptional biodiversity. Here, we examine population genetic structure of the viviparous sea snake, Hydrophis curtus, to assess how past and present barriers to gene flow in the IAA have contributed to genetic and species diversity in a fully marine reptile. Mitochondrial and anonymous nuclear sequences and ten microsatellite loci were used to identify patterns of historical genetic structure and population expansion, reconstruct dated genealogies and assess levels of recent gene flow. These markers revealed strong concordant geographic structure within H. curtus with a prominent genetic break between populations broadly distributed in the Indian Ocean and the West Pacific. These populations were estimated to have diverged in the late Pliocene or early Pleistocene, and microsatellite admixture analyses suggested limited recent gene flow between them despite the current lack of barriers to dispersal, indicating possible cryptic species. Subsequent divergence in the mid–late Pleistocene was detected within the West Pacific clade among the populations in the Phuket‐Thailand region, South‐East Asia and Australia, and two of these populations also showed genetic signals of recent range expansions. Our results show that climatic fluctuations during the Plio‐Pleistocene generated high levels of cryptic genetic diversity in H. curtus, and add to similar findings for diverse other marine groups in the IAA.  相似文献   

4.
Rivers and lake systems in the southern cone of South America have been widely influenced by historical glaciations, carrying important implications for the evolution of aquatic organisms, including prompting transitions between marine and freshwater habitats and by triggering hybridization among incipient species via waterway connectivity and stream capture events. Silverside fishes (Odontesthes) in the region comprise a radiation of 19 marine and freshwater species that have been hypothesized on the basis of morphological or mitochondrial DNA data to have either transitioned repeatedly into continental waters from the sea or colonized marine habitats following freshwater diversification. New double digest restriction‐site associated DNA data presented here provide a robust framework to investigate the biogeographical history of and habitat transitions in Odontesthes. We show that Odontesthes silversides originally diversified in the Pacific but independently colonized the Atlantic three times, producing three independent marine‐to‐freshwater transitions. Our results also indicate recent introgression of marine mitochondrial haplotypes into two freshwater clades, with more recurring instances of hybridization among Atlantic‐ versus Pacific‐slope species. In Pacific freshwater drainages, hybridization with a marine species appears to be geographically isolated and may be related to glaciation events. Substantial structural differences of estuarine gradients between these two geographical areas may have influenced the frequency, intensity and evolutionary effects of hybridization events.  相似文献   

5.
The clupeoid fishes are distributed worldwide, with marine, freshwater and euryhaline species living in either tropical or temperate environments. Regional endemism is important at the species and genus levels, and the highest species diversity is found in the tropical marine Indo-West Pacific region. The clupeoid distribution follows two general pattern of species richness, the longitudinal and latitudinal gradients. To test historical hypotheses explaining the formation of these two gradients, we have examined the early biogeography of the Clupeoidei in reconstructing the evolution of their habitat preferences along with their ancestral range distributions on a time-calibrated mitogenomic phylogeny. The phylogenetic results support the distinction of nine main lineages within the Clupeoidei, five of them new. We infer several independent transitions from a marine to freshwater environment and from a tropical to temperate environment that occurred after the initial diversification period of the Clupeoidei. These results combined with our ancestral range reconstruction hypothesis suggest that the probable region of origin and diversification of the Clupeoidei during the Cretaceous period was the tropical marine precursor to the present Indo-West Pacific region. Thus, our study favors the hypotheses of “Region of origin” and “Tropical conservatism” to explain the origins of the longitudinal and latitudinal gradients of clupeoid species richness, respectively. Additional geological and paleontological evidence further define the tropical marine paleo-region of origin as the eastern Tethys Sea region. The Cretaceous fossil record of the Clupeoidei is partially incongruent with the results here as it contains taxa found outside this region. We discuss three possible causes of conflict between our biogeographical hypothesis and the distributions of the Cretaceous clupeoid fossils: regional extinction, incomplete taxonomic sampling and incorrect timescale estimation.  相似文献   

6.
Echinometra is a pantropical sea urchin made famous through studies of phylogeny, speciation, and genetic structure of the Indo-West Pacific (IWP) species. We sequenced 630 bp of the cytochrome oxidase I (COI) mitochondrial gene to provide comparable information on the eastern Pacific and Atlantic species, using divergence between those separated by closure of the Isthmus of Panama 3.1 million years ago (Ma) to estimate dates for cladogenic events. Most recently (1.27-1. 62 Ma), the Atlantic species E. lucunter and E. viridis diverged from each other, at a time in the Pleistocene that sea levels fell and Caribbean coral speciation and extinction rates were high. An earlier split, assumed to have been coincident with the completion of the Isthmus of Panama, separated the eastern Pacific E. vanbrunti from the Atlantic common ancestor. Transisthmian COI divergence similar to that in the sea urchin genus Eucidaris supports this assumption. The most ancient split in Echinometra occurred between the IWP and the neotropical clades, due to cessation of larval exchange around South Africa or across the Eastern Pacific Barrier. Gene flow within species is generally high; however, there are restrictions to genetic exchange between E. lucunter populations from the Caribbean and those from the rest of the Atlantic. Correlation between cladogenic and vicariant events supports E. Mayr's contention that marine species, despite their high dispersal potential, form by means of geographical separation. That sympatric, nonhybridizing E. lucunter and E. viridis were split so recently suggests, however, that perfection of reproductive barriers between marine species with large populations can occur in less than 1.6 million years (Myr).  相似文献   

7.
A phylogenetic approach to the origin and maintenance of species diversity ideally requires the sampling of all species within a clade, confirmation that they are evolutionarily distinct entities, and knowledge of their geographical distributions. In the marine tropics such studies have mostly been of fish and reef-associated organisms, usually with high dispersal. In contrast, snails of the genus Echinolittorina (Littorinidae) are restricted to rocky shores, have a four-week pelagic development (and recorded dispersal up to 1400 km), and show different evolutionary patterns. We present a complete molecular phylogeny of Echinolittorina, derived from Bayesian analysis of sequences from nuclear 28S rRNA and mitochondrial 12S rRNA and COI genes (nodal support indicated by posterior probabilities, maximum likelihood, and neighbor-joining bootstrap). This consists of 59 evolutionarily significant units (ESUs), including all 50 known taxonomic species. The 26 ESUs found in the Indo-West Pacific region form a single clade, whereas the eastern Pacific and Atlantic species are basal. The earliest fossil occurred in the Tethys during the middle Eocene and we suggest that the Indo-West Pacific clade has been isolated since closure of the Tethyan seaway in the early Miocene. The geographical distributions of all species (based on more than 3700 locality records) appear to be circumscribed by barriers of low temperature, unsuitable sedimentary habitat, stretches of open water exceeding about 1400 km, and differences in oceanographic conditions on the continuum between oceanic and continental. The geographical ranges of sister species show little or no overlap, indicating that the speciation mode is predominantly allopatric. Furthermore, range expansion following speciation appears to have been limited, because a high degree of allopatry is maintained through three to five branching points of the phylogeny. This may be explained by infrequent long-distance colonization, habitat specialization on the oceanic/continental gradient, and perhaps by interspecific competition. In the eastern Pacific plus Atlantic we identify five cases of divergence on either side of the Isthmus of Panama, but our estimates of their ages pre-date the emergence of the Isthmus. There are three examples of sister relationships between species in the western Atlantic and eastern Atlantic, all resulting from dispersal to the east. Within the Indo-West Pacific, we find no geographical pattern of speciation events; narrowly endemic species of recent origin are present in both peripheral and central parts of the region. Evidence from estimated divergence times of sister species, and from a plot of the number of lineages over time, suggest that there has been no acceleration of diversification during the glacio-eustatic cycles of the Plio-Pleistocene. In comparison with reefal organisms, species of Echinolittorina on rocky shores may be less susceptible to extinction or isolation during sea-level fluctuations. The species richness of Echinolittorina in the classical biogeographic provinces conforms to the common pattern of highest diversity (11 species) in the central "East Indies Triangle" of the Indo-West Pacific, with a subsidiary focus in the eastern Pacific and western Atlantic, and lowest diversity in the eastern Atlantic. The diversity focus in the East Indies Triangle is produced by a mosaic of restricted allopatric species and overlap of a few widespread ones, and is the result of habitat specialization rather than historical vicariance. This study emphasizes the plurality of biogeographic histories and speciation patterns in the marine tropics.  相似文献   

8.
Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini)   总被引:3,自引:0,他引:3  
Large marine fishes typically have little population genetic structure. The exceptions are associated with sedentary behaviour, disjunct distributions, or reproductive philopatry. Scalloped hammerhead sharks (Sphyrna lewini) incorporate the contrasting traits of oceanic habitat (usually associated with high dispersal) and possible fidelity to nursery grounds (for reproductive females). To evaluate the expectations of these contrasting behaviours, we examined the global genetic structure of S. lewini based on collections (n = 271 individuals) from 20 nursery areas. A 548-bp fragment of mitochondrial DNA control region revealed 22 polymorphic sites, 24 haplotypes, and three lineages distinguished by 2.56-3.77% sequence divergence. Coalescence analyses based on a provisional molecular clock indicate an origin in the Indo-West Pacific with late Pleistocene radiations into the central Pacific (Hawaii) and eastern Pacific (Central America), as well as recent interchange between oceans via southern Africa. Population subdivisions are strong (overall Phi(ST) = 0.749, P < 0.0001 and among oceans Phi(ST) = 0.598, P < 0.0098). Genetic discontinuity within oceans (Phi(ST) = 0.519, P < 0.0001) is primarily associated with oceanic barriers (migration across oceans M approximately 0), with much less structure along continental margins (M > 10). We conclude that nursery populations linked by continuous coastline have high connectivity, but that oceanic dispersal by females is rare. Although we cannot rule out philopatry to natal nurseries, oceanic barriers appear to have a much stronger influence on the genetic architecture of this species and may indicate a mechanism for recent evolutionary radiations in the genus Sphyrna.  相似文献   

9.
Fluctuations of global climate changes during the Pleistocene had a huge impact on the marginal seas of the Northwestern Pacific. To examine historical demography and the population genetic structure of Collichthys lucidus, a total of 151 individuals from 7 locations were sequenced at the 5′ end of mitochondrial DNA control region and 380-bp fragments were obtained. The results of AMOVA showed that the genetic variation among the two groups was 78.39 % (P?=?0.78) and among populations within groups was 0.43 % (P?=?0.02). Both mismatch distribution analysis and neutrality tests showed C. lucidus has experienced a recent population expansion. Three distinct clades suggested that C. lucidus might be isolated in the three marginal seas during the Pleistocene periods. No genetic divergence within groups should be explained by insufficient time to attain migration-drift equilibrium. The changes in sea level during the Pleistocene had a major effect on the C. lucidus phylogeographical pattern because it limited its dispersal and at times created isolated populations.  相似文献   

10.
The Indo‐Australian Archipelago (IAA) is the richest area of biodiversity in the marine realm, yet the processes that generate and maintain this diversity are poorly understood and have hardly been studied in the mangrove biotope. Cerithidea is a genus of marine and brackish‐water snails restricted to mangrove habitats in the Indo‐West Pacific, and its species are believed to have a short pelagic larval life. Using molecular and morphological techniques, we demonstrate the existence of 15 species, reconstruct their phylogeny and plot their geographical ranges. Sister species show a pattern of narrowly allopatric ranges across the IAA, with overlap only between clades that show evidence of ecological differentiation. These allopatric mosaic distributions suggest that speciation may have been driven by isolation during low sea‐level stands, during episodes preceding the Plio‐Pleistocene glaciations. The Makassar Strait forms a biogeographical barrier hindering eastward dispersal, corresponding to part of Wallace's Line in the terrestrial realm. Areas of maximum diversity of mangrove plants and their associated molluscs do not coincide closely. © 2013 The Natural History Museum. Biological Journal of the Linnean Society © 2013 The Linnean Society of London, 2013, 110 , 564–580.  相似文献   

11.
The Southwest Indian Ocean (SWIO) is a striking marine biodiversity hotspot. Coral reefs in this region host a high proportion of endemics compared to total species richness and they are particularly threatened by human activities. The island archipelagos with their diverse marine habitats constitute a natural laboratory for studying diversification processes. Rocky shores in the SWIO region have remained understudied. This habitat presents a high diversity of molluscs, in particular gastropods. To explore the role of climatic and geological factors in lineage diversification within the genus Nerita, we constructed a new phylogeny with an associated chronogram from two mitochondrial genes [cytochrome oxidase sub-unit 1 and 16S rRNA], combining previously published and new data from eight species sampled throughout the region. All species from the SWIO originated less than 20 Ma ago, their closest extant relatives living in the Indo-Australian Archipelago (IAA). Furthermore, the SWIO clades within species with Indo-Pacific distribution ranges are quite recent, less than 5 Ma. These results suggest that the regional diversification of Nerita is closely linked to tectonic events in the SWIO region. The Reunion mantle plume head reached Earth’s surface 67 Ma and has been stable and active since then, generating island archipelagos, some of which are partly below sea level today. Since the Miocene, sea-level fluctuations have intermittently created new rocky shore habitats. These represent ephemeral stepping-stones, which have likely facilitated repeated colonization by intertidal gastropods, like Nerita populations from the IAA, leading to allopatric speciation. This highlights the importance of taking into account past climatic and geological factors when studying diversification of highly dispersive tropical marine species. It also underlines the unique history of the marine biodiversity of the SWIO region.  相似文献   

12.
To determine how historical processes, namely speciation, extinction, and dispersal, have contributed to regional species diversity patterns across the marine tropics, we examined the biogeographical history of a circumtropical genus of intertidal gastropods. A species-level phylogeny of Nerita, representing approximately 87% of extant species, was developed from 1608bp of mitochondrial (COI and 16S) and nuclear (ATPSalpha) markers. Phylogenetic relationships generally corresponded to prior classifications; however, comprehensive sampling revealed a number of previously undetected ESUs. Using the resulting tree as a framework, we combined geographical distributions and fossil evidence to reconstruct ancestral ranges, produce a time-calibrated chronogram, and estimate diversification rates. Analyses revealed two monophyletic eastern Pacific+Atlantic (EPA) clades, each of which likely split from an Indo-West Pacific (IWP) sister clade prior to an early Miocene Tethys Seaway closure. More recent diversification throughout the IWP appears to have been driven by both vicariance and dispersal events; EPA diversity has been further shaped by speciation across the Central American Seaway prior to its closure and dispersal across the Atlantic. Despite the latter, inter-regional dispersal has been rare, and likely contributes little to regional diversity patterns. Similarly, infrequent transitions into temperate regions combined with reduced diversification rates may explain low diversity in West and South Pacific clades. Since origination, Nerita diversification appears remarkably constant, with the exception of a lag in the late Eocene-early Oligocene and elevated rates in the late Oligocene-early Miocene. However, a comparison among regions suggested that IWP clades have experienced, on average, higher rates of speciation. Fossil evidence indicates that the EPA likely witnessed greater extinction relative to the IWP. We propose that regional differences in species diversity in Nerita have been largely shaped by differential rates of speciation and extinction.  相似文献   

13.
The perceived wide geographic range of organisms in the sea, facilitated by ready dispersal of waterborne dispersal stages, is a challenge for hypotheses of marine speciation but a boon to efforts of marine conservation. Wide species ranges are especially striking in the reef-rich Indo-west Pacific, the largest and most diverse marine biogeographic region, extending across half the planet. The insular marine biota of the tropical Pacific is characterized by wide-ranging species and provides the most striking examples of long distance dispersal, with endemism largely confined to the most remote island groups. Here we show that the gastropod Astralium "rhodostomum" has developed endemic clades on almost every Pacific archipelago sampled, a pattern unprecedented in marine biogeography, and reminiscent of the terrestrial biota of oceanic islands. Mitochondrial DNA sequences indicate that this species-complex is comprised of at least 30 geographically isolated clades, separated by as little as 180 km. Evidence suggests that such fine scale endemism and high diversity is not exceptional, but likely characterizes a substantial fraction of the reef biota. These results imply that (1) marine speciation can regularly occur over much finer spatial scales than generally accepted, (2) the diversity of coral reefs is even higher than suggested by morphology-based estimates, and (3) conservation efforts need to focus at the archipelagic level in the sea as on land.  相似文献   

14.
Phylogeographical patterns of marine and diadromous organisms are often influenced by dynamic ocean histories. For example, the marine realm around the Japanese Archipelago is an interesting area for phylogeographical research because of the wide variation in the environments driven by repeated shifts in sea level in the Quaternary. We analysed mitochondrial cyt b gene and nuclear myh6 gene sequences for individuals collected from throughout the range of the anadromous fish Leucopsarion petersii to assess the lineage divergence, phylogeographical pattern and historical demography in relation to geological history and oceanographic features around the archipelago. Leucopsarion petersii has two major lineages (the Japan Sea and Pacific Ocean lineages), which diverged during the late-early to middle Pleistocene. Geographical distributions of the two lineages were closely related to the pathways of the two warm currents, the Tsushima Current and the Kuroshio Current, that flow past the archipelago. Evidence of introgressive hybridization between these lineages was found at two secondary contact zones. Demographic tests suggested that the Japan Sea and Pacific Ocean lineages carried the genetic signal of different historical demographic processes, and these signals are probably associated with differences in habitat stability during recent glacial periods. The Japan Sea lineage has a larger body-size and more vertebrae, probably in relation to severe habitat conditions through Pleistocene climatic oscillations. Thus, the two lineages have long independent evolutionary histories, and the phylogeographical structure and demography of this species have been influenced both by historical events and the present-day oceanography around the Japanese Archipelago.  相似文献   

15.
Climatic oscillations throughout the Pleistocene combined with geological and topographic complexity resulted in extreme habitat heterogeneity along the Atlantic coast of Brazil. Inferring how these historic landscape patterns have structured the current diversity of the region's biota is important both for our understanding of the factors promoting diversification, as well as the conservation of this biodiversity hotspot. Here we evaluate potential historical scenarios of diversification in the Atlantic Coastal Forest of Brazil by investigating the population genetic structure of a frog endemic to the region. Using mitochondrial and nuclear sequences, we generated a Bayesian population-level phylogeny of the Thoropa miliaris species complex. We found deep genetic divergences among five geographically distinct clades. Southern clades were monophyletic and nested within paraphyletic northern clades. Analyses of historical demographic patterns suggest an overall north to south population expansion, likely associated with regional differences in habitat stability during the Pliocene and early Pleistocene. However, genetic structure among southern populations is less pronounced and likely represents more recent vicariant events resulting from Holocenic sea-level oscillations. Our analyses corroborate that the Atlantic Coastal Forest has been a biogeographically dynamic landscape and suggest that the high diversity of its fauna and flora resulted from a combination of climatic and geologic events from the Pliocene to the present.  相似文献   

16.
Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range.  相似文献   

17.
The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata.  相似文献   

18.
Understanding spatial patterns of gene flow and genetic structure is essential for the conservation of marine ecosystems. Contemporary ocean currents and historical isolation due to Pleistocene sea level fluctuations have been predicted to influence the genetic structure in marine populations. In the Indo‐Australian Archipelago (IAA), the world's hotspot of marine biodiversity, seagrasses are a vital component but population genetic information is very limited. Here, we reconstructed the phylogeography of the seagrass Thalassia hemprichii in the IAA based on single nucleotide polymorphisms (SNPs) and then characterized the genetic structure based on a panel of 16 microsatellite markers. We further examined the relative importance of historical isolation and contemporary ocean currents in driving the patterns of genetic structure. Results from SNPs revealed three population groups: eastern Indonesia, western Indonesia (Sunda Shelf) and Indian Ocean; while the microsatellites supported five population groups (eastern Indonesia, Sunda Shelf, Lesser Sunda, Western Australia and Indian Ocean). Both SNPs and microsatellites showed asymmetrical gene flow among population groups with a trend of southwestward migration from eastern Indonesia. Genetic diversity was generally higher in eastern Indonesia and decreased southwestward. The pattern of genetic structure and connectivity is attributed partly to the Pleistocene sea level fluctuations modified to a smaller level by contemporary ocean currents.  相似文献   

19.
The Pleistocene geological history of the Hawaiian Islands is becoming well understood. Numerous predictions about the influence of this history on the genetic diversity of Hawaiian organisms have been made, including the idea that changing sea levels would lead to the genetic differentiation of populations isolated on individual volcanoes during high sea stands. Here, we analyse DNA sequence data from two closely related, endemic Hawaiian damselfly species in order to test these predictions, and generate novel insights into the effects of Pleistocene glaciation and climate change on island organisms. Megalagrion xanthomelas and Megalagrion pacificum are currently restricted to five islands, including three islands of the Maui Nui super-island complex (Molokai, Lanai, and Maui) that were connected during periods of Pleistocene glaciation, and Hawaii island, which has never been subdivided. Maui Nui and Hawaii are effectively a controlled, natural experiment on the genetic effects of Pleistocene sea level change. We confirm well-defined morphological species boundaries using data from the nuclear EF-1alpha gene and show that the species are reciprocally monophyletic. We perform phylogeographic analyses of 663 base pairs (bp) of cytochrome oxidase subunit II (COII) gene sequence data from 157 individuals representing 25 populations. Our results point to the importance of Pleistocene land bridges and historical island habitat availability in maintaining inter-island gene flow. We also propose that repeated bottlenecks on Maui Nui caused by sea level change and restricted habitat availability are likely responsible for low genetic diversity there. An island analogue to northern genetic purity and southern diversity is proposed, whereby islands with little suitable habitat exhibit genetic purity while islands with more exhibit genetic diversity.  相似文献   

20.
Hu ZM  Uwai S  Yu SH  Komatsu T  Ajisaka T  Duan DL 《Molecular ecology》2011,20(18):3894-3909
Pleistocene glacial oscillations and associated tectonic processes are believed to have influenced the historical abundances and distribution of organisms in the Asia Northwest Pacific (ANP). Accumulating evidence indicates that factors shaping tempospatial population dynamics and distribution patterns of marine taxa vary with biogeographical latitude, pelagic behaviour and oceanographic regimes. To detect what kinds of historical and contemporary factors affected genetic connectivity, phylogeographic profiles of littoral macroalga Sargassum horneri in the ANP were analysed based on mitochondrial (Cox3) and chloroplast (rbcL) data sets. Five distinct clades were recovered. A strong signature of biogeographical structure was revealed (Φ(CT) = 0.487, P < 0.0001) derived from remarkable differentiation in clade distribution, as clade I is restricted to Chinese marginal seas (Yellow-Bohai Sea, East China Sea and South China Sea), whereas clades II-V are discontinuously scattered around the main Islands of Japan. Furthermore, two secondary contact regions were identified along the south Japan-Pacific coastline. This significant differentiation between the two basins may reflect historical glacial isolation in the northwestern Pacific, which is congruent with the estimates of clade divergence and demographic expansion during the late Quaternary low sea levels. Analysis of molecular variance and the population-pair statistic F(ST) also revealed significant genetic structural differences between Chinese marginal seas and the Japanese basin. This exceptional phylogeographic architecture in S. horneri, initially shaped by historical geographic isolation during the late Pleistocene ice age and physical biogeographical barriers, can be complicated by oceanographic regimes (ocean surface currents) and relocating behaviour such as oceanic drifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号