首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Amphibian declines: future directions   总被引:2,自引:0,他引:2  
Abstract. The amphibian decline problem is complex, and there is no easy solution. I highlight four major areas of future research that should increase our ability to detect declines, elucidate their underlying mechanisms, and advance our capacity to manage and conserve amphibian populations. First, a statistically sensitive monitoring approach is necessary to determine the distribution and abundance of amphibian populations, to assess whether they are declining, and to quantify the extent of declines. Most amphibian populations characteristically fluctuate, detection probabilities may be low for many species and populations tend to decline in numbers between years more often than they increase. These traits make establishing monitoring programmes difficult and distinguishing declines from natural fluctuations challenging. It is thus necessary to determine the best monitoring techniques based on their statistical power and to use appropriate statistical methods for detecting population trends. Secondly, although amphibian population studies occur most commonly at single or few breeding sites, research should occur often at the landscape level, and conservation efforts should focus on suitable habitat (whether or not it is occupied) and dispersal capabilities of species. Metapopulation dynamics are probably important for many species, but we must be cautious how we define metapopulations. That is, the term ‘metapopulation’ is currently used to define a wide range of demographic situations in amphibian populations, each with different management implications. Thirdly, recent advances in molecular genetic techniques make it possible to infer demographic events such as effects of recent fragmentation, bottlenecks or hybridization. Molecular techniques can be used in conjunction with census surveys to bolster knowledge about demographic processes such as declines. Alternatively, in the absence of long‐term census data, molecular data can be used to infer population trends. New genomic approaches may make estimating adaptive genetic variation more feasible. Fourthly, multi‐factorial studies are needed to disentangle the complexity of the several putative causes that probably interact to cause amphibian declines. Recent studies demonstrate the value of a multi‐factorial approach, and more work is needed to elucidate the synergistic effects of multiple environmental factors affecting amphibian populations simultaneously worldwide.  相似文献   

2.
As part of an overall "biodiversity crisis" many amphibian populations are in decline throughout the world. Numerous causes have been invoked to explain these declines. These include habitat destruction, climate change, increasing levels of ultraviolet radiation, environmental contamination, disease, and the introduction of non-native species. In this paper, we argue that amphibian population declines are caused by different abiotic and biotic factors acting together in a context-dependent fashion. Moreover, different species and different populations of the same species may react in different ways to the same environmental insult. Thus, the causes of amphibian population declines will vary spatially and temporally. Although some generalizations (e.g. those concerning environmental stress and disease outbreaks) can be made about amphibian population declines, we suggest that these generalizations take into account the context-dependent dynamics of ecological systems.  相似文献   

3.
The massive reductions in amphibian populations taking place across the globe are unprecedented in modern times. Within the Neotropics, the enigmatic decline of amphibians has been considered predominantly a montane phenomenon; however, recent evidence suggests amphibian and reptile populations in lowland forests in Central America are waning as well. Unfortunately, very little baseline data are available for conducting large scale time series studies in order to further investigate and confirm declines in the lowland forests of tropical America. Here we compare leaf litter herpetofauna abundance at sites in the Central Amazon, sampled first in 1984–1985 and again in 2007. We find no evidence for a decline in abundance or biomass of amphibians over a period of 22 years at this site. This conclusion differs markedly from the decline of 75% in amphibian populations over 35 years at a lowland site in Costa Rica. To explore potential declines in lowland Neotropical amphibian populations in detail, we suggest that existing baseline data be comprehensively compiled and analyzed for previously sampled sites and that these sites be re-sampled using comparable methodologies.  相似文献   

4.
Pathogen spread can cause population declines and even species extinctions. Nonetheless, in the absence of tailored monitoring schemes, documenting pathogen spread can be difficult. In the case of worldwide amphibian declines the best present understanding is that the chytrid fungus Batrachochytrium dendrobatidis (Bd) has recently spread, causing amphibian declines and extinction in the process. However, good evidence demonstrating pathogen arrival followed by amphibian decline is rare, and analysis of putative evidence is often inadequate. Here we attempt to examine the relationship between Bd arrival and amphibian decline across north-eastern Australia, using sites where a wave-like pattern of amphibian decline was first noticed and at which intensive research has since been conducted. We develop an analytical framework that allows rigorous estimation of pathogen arrival date, which can then be used to test for a correlation between the time of pathogen arrival and amphibian decline across sites. Our results show that, with the current dataset, the earliest possible arrival date of Bd in north-eastern Australia is completely unresolved; Bd could have arrived immediately before sampling commenced or may have arrived thousands of years earlier, the present data simply cannot say. The currently available data are thus insufficient to assess the link between timing of pathogen arrival and population decline in this part of the world. This data insufficiency is surprising given that there have been decades of research on chytridiomycosis in Australia and that there is a general belief that the link between Bd arrival and population decline is well resolved in this region. The lack of data on Bd arrival currently acts as a major impediment to determining the role of environmental factors in driving the global amphibian declines, and should be a major focus of future research.  相似文献   

5.
Over the last two decades, numerous studies have shown that alien predators contributed to amphibian population declines. Both experimental studies and correlative field surveys implicated alien species of fish, bullfrogs and crayfish as major contributors to amphibian population decline, and in some instances local extinction. Additional studies have demonstrated that alien predators also caused long‐term changes in aquatic communities. Recent studies have examined the feasibility of removing alien predators, and provide some evidence that amphibian populations can recover. Applying information gained from past studies to the recovery of amphibian populations will be the challenge of future studies. International, national and local policies that regulate alien predators should be based largely on the body of scientific evidence already in the literature. Scientists need to be more involved with policy‐makers to most effectively change laws that regulate alien predators.  相似文献   

6.
Roughly 40% of amphibian species are in decline with habitat loss, disease, and climate change being the most cited threats. Heterogeneity of extrinsic (e.g. climate) and intrinsic (e.g. local adaptations) factors across a species’ range should influence population response to climate change and other threats. Here we examine relative detectability changes for five direct-developing leaf litter frogs between 42-year sampling periods at one Lowland Tropical Forest site (51 m.a.s.l.) and one Premontane Wet Forest site (1100 m.a.s.l.) in southwest Costa Rica. We identify individualistic changes in relative detectability among populations between sampling periods at different elevations. Both common and rare species showed site-specific declines, and no species exhibited significant declines at both sites. Detection changes are correlated with changes in temperature, dry season rainfall, and leaf litter depth since1969. Our study species share Least Concern conservation status, life history traits, and close phylogenetic relationship, yet their populations changed individualistically both within and among species. These results counter current views of the uniformity or predictability of amphibian decline response and suggest additional complexity for conservation decisions.  相似文献   

7.
Population declines caused by natural and anthropogenic factors can quickly erode genetic diversity in natural populations. In this study, we examined genetic variation within 10 tiger salamander populations across northern Yellowstone National Park in Wyoming and Montana, USA using eight microsatellite loci. We tested for the genetic signature of population decline using heterozygosity excess, shifts in allele frequencies, and low ratios of allelic number to allelic size range (M-ratios). We found different results among the three tests. All 10 populations had low M-ratios, five had shifts in allele frequencies and only two had significant heterozygosity excesses. These results support theoretical expectations of different temporal signatures among bottleneck tests and suggest that both historical fish stocking, recent, sustained drought, and possibly an emerging amphibian disease have contributed to declines in effective population size.  相似文献   

8.
Global amphibian declines: sorting the hypotheses   总被引:10,自引:0,他引:10  
Abstract. Reports of malformed amphibians and global amphibian declines have led to public concern, particularly because amphibians are thought to be indicator species of overall environmental health. The topic also draws scientific attention because there is no obvious, simple answer to the question of what is causing amphibian declines? Complex interactions of several anthropogenic factors are probably at work, and understanding amphibian declines may thus serve as a model for understanding species declines in general. While we have fewer answers than we would like, there are six leading hypotheses that we sort into two classes. For class I hypotheses, alien species, over‐exploitation and land use change, we have a good understanding of the ecological mechanisms underlying declines; these causes have affected amphibian populations negatively for more than a century. However, the question remains as to whether the magnitude of these negative effects increased in the 1980s, as scientists began to notice a global decline of amphibians. Further, remedies for these problems are not simple. For class II hypotheses, global change (including UV radiation and global climate change), contaminants and emerging infectious diseases we have a poor, but improving understanding of how each might cause declines. Class II factors involve complex and subtle mechanistic underpinnings, with probable interactions among multiple ecological and evolutionary variables. They may also interact with class I hypotheses. Suspected mechanisms associated with class II hypotheses are relatively recent, dating from at least the middle of the 20th century. Did these causes act independently or in concert with pre‐existing negative forces of class I hypotheses to increase the rate of amphibian declines to a level that drew global attention? We need more studies that connect the suspected mechanisms underlying both classes of hypotheses with quantitative changes in amphibian population sizes and species numbers. An important step forward in this task is clarifying the hypotheses and conditions under which the various causes operate alone or together.  相似文献   

9.
Experimental research has identified many putative agents of amphibian decline, yet the population-level consequences of these agents remain unknown, owing to lack of information on compensatory density dependence in natural populations. Here, we investigate the relative importance of intrinsic (density-dependent) and extrinsic (climatic) factors impacting the dynamics of a tree frog (Hyla arborea) population over 22 years. A combination of log-linear density dependence and rainfall (with a 2-year time lag corresponding to development time) explain 75% of the variance in the rate of increase. Such fluctuations around a variable return point might be responsible for the seemingly erratic demography and disequilibrium dynamics of many amphibian populations.  相似文献   

10.
Chytridiomycosis is an emerging infectious disease of amphibians caused by a chytrid fungus, Batrachochytrium dendrobatidis. This panzootic does not equally affect all amphibian species within an assemblage; some populations decline, others persist. Little is known about the factors that affect disease resistance. Differences in behavior, life history, biogeography, or immune function may impact survival. We found that an innate immune defense, antimicrobial skin peptides, varied significantly among species within a rainforest stream amphibian assemblage that has not been exposed to B. dendrobatidis. If exposed, all amphibian species at this central Panamanian site are at risk of population declines. In vitro pathogen growth inhibition by peptides from Panamanian species compared with species with known resistance (Rana pipiens and Xenopus laevis) or susceptibility (Bufo boreas) suggests that of the nine species examined, two species (Centrolene prosoblepon and Phyllomedusa lemur) may demonstrate strong resistance, and the other species will have a higher risk of disease-associated population declines. We found little variation among geographically distinct B. dendrobatidis isolates in sensitivity to an amphibian skin peptide mixture. This supports the hypothesis that B. dendrobatidis is a generalist pathogen and that species possessing an innate immunologic defense at the time of disease emergence are more likely to survive.  相似文献   

11.
Since the early 1980s, the southern corroboree frog Pseudophryne corroboree and northern corroboree frog P. pengilleyi have been in a state of decline from their sub-alpine and high montane bog environments on the southern tablelands of New South Wales, Australia. To date, there has been no adequate explanation as to what is causing the decline of these species. We investigated the possibility that a pathogen associated with other recent frog declines in Australia, the amphibian chytrid fungus Batrachochytrium dendrobatidis, may have been implicated in the decline of the corroboree frogs. We used histology of toe material and real-time PCR of skin swabs to investigate the presence and infection rates with B. dendrobatidis in historic and extant populations of both corroboree frog species. Using histology, we did not detect any B. dendrobatidis infections in corroboree frog populations prior to their decline. However, using the same technique, high rates of infection were observed in populations of both species after the onset of substantial population declines. The real-time PCR screening of skin swabs identified high overall infection rates in extant populations of P. corroboree (between 44 and 59%), while significantly lower rates of infection were observed in low-altitude P. pengilleyi populations (14%). These results suggest that the initial and continued decline of the corroboree frogs may well be attributed to the emergence of B. dendrobatidis in populations of these species.  相似文献   

12.
Ultraviolet radiation, toxic chemicals and amphibian population declines   总被引:9,自引:0,他引:9  
Abstract. As part of an overall ‘biodiversity crisis’, many amphibian populations are in decline throughout the world. Numerous factors have contributed to these declines, including habitat destruction, pathogens, increasing ultraviolet (UV) radiation, introduced non‐native species and contaminants. In this paper we review the contribution of increasing UV radiation and environmental contamination to the global decline of amphibian populations. Both UV radiation and environmental contaminants can affect amphibians at all life stages. Exposure to UV radiation and to certain contaminants can kill amphibians and induce sublethal affects in embryos, larvae and adults. Moreover, UV radiation and contaminants may interact with one another synergistically. Synergistic interactions of UV radiation with contaminants can enhance the detrimental effects of the contaminant and UV radiation.  相似文献   

13.
Global losses of amphibian populations are a major conservation concern and their causes have generated substantial debate. Habitat fragmentation is considered one important cause of amphibian decline. However, if fragmentation is to be invoked as a mechanism of amphibian decline, it must first be established that dispersal is prevalent among contiguous amphibian populations using formal movement estimators. In contrast, if dispersal is naturally low in amphibians, fragmentation can be disregarded as a cause of amphibian declines and conservation efforts can be focused elsewhere. We examined dispersal rates in Columbia spotted frogs (Rana luteiventris) using capture-recapture analysis of over 10,000 frogs in combination with genetic analysis of microsatellite loci in replicate basins. We found that frogs had exceptionally high juvenile dispersal rates (up to 62% annually) over long distances (>5km), large elevation gains (>750m) and steep inclines (36 degrees incline over 2km) that were corroborated by genetic data showing high gene flow. These findings show that dispersal is an important life-history feature of some amphibians and suggest that habitat fragmentation is a serious threat to amphibian persistence.  相似文献   

14.
There is a widespread consensus that the earth is experiencing a mass extinction event and at the forefront are amphibians, the most threatened of all vertebrate taxa. A recent assessment found that nearly one-third (32%, 1,856 species) of the world’s amphibian species are threatened. Amphibians have existed on the earth for over 300 million years, yet in just the last two decades there have been an alarming number of extinctions, nearly 168 species are believed to have gone extinct and at least 2,469 (43%) more have populations that are declining. Infectious diseases have been recognized as one major cause of worldwide amphibian population declines. This could be the result of the appearance of novel pathogens, or it could be that exposure to environmental stressors is increasing the susceptibility of amphibians to opportunistic pathogens. Here I review the potential effects of stressors on disease susceptibility in amphibians and relate this to disease emergence in human and other wildlife populations. I will present a series of case studies that illustrate the role of stress in disease outbreaks that have resulted in amphibian declines. First, I will examine how elevated sea-surface temperatures in the tropical Pacific since the mid-1970s have affected climate over much of the world and could be setting the stage for pathogen-mediated amphibian declines in many regions. Finally, I will discuss how the apparently rapid increase in the prevalence of amphibian limb deformities is linked to the synergistic effects of trematode infection and exposure to chemical contaminants.  相似文献   

15.
The evidence for amphibian population declines is based on count data that were not adjusted for detection probabilities. Such data are not reliable even when collected using standard methods. The formula C = Np (where C is a count, N the true parameter value, and p is a detection probability) relates count data to demography, population size, or distributions. With unadjusted count data, one assumes a linear relationship between C and N and that p is constant. These assumptions are unlikely to be met in studies of amphibian populations. Amphibian population data should be based on methods that account for detection probabilities.  相似文献   

16.
Disease can be an important driver of host population dynamics and epizootics can cause severe host population declines. Batrachochytrium dendrobatidis (Bd), the pathogen causing amphibian chytridiomycosis, may occur epizootically or enzootically and can harm amphibian populations in many ways. While effects of Bd epizootics are well documented, the effects of enzootic Bd have rarely been described. We used a state-space model that accounts for observation error to test whether population trends of a species highly susceptible to Bd, the midwife toad Alytes obstetricans, are negatively affected by the enzootic presence of the pathogen. Unexpectedly, Bd had no negative effect on population growth rates from 2002-2008. This suggests that negative effects of disease on individuals do not necessarily translate into negative effects at the population level. Populations of amphibian species that are susceptible to the emerging disease chytridiomycosis can persist despite the enzootic presence of the pathogen under current environmental conditions.  相似文献   

17.
Global amphibian declines suggest a major shift in the amount and quality of habitat for these sensitive taxa. Many species that were once widespread are now experiencing declines either in part of or across their historic range. The northern leopard frog (Rana [Lithobates] pipiens] has undergone significant declines particularly in the western United States and Canada. Leopard frog population losses in Nevada are largely due to habitat fragmentation and the introduction of nonnative fish, amphibian, and plant species. Only two populations remain in the Truckee and Carson River watersheds of western Nevada which represents the western boundary of this species range. We used sequence data for an 812 base pair fragment of the mitochondrial NADH dehydrogenase 1 (ND1) gene to support a native origin for western Nevada populations. All frogs had a single haplotype (W07) from the distinct western North America ND1 haplotype clade. Data from seven polymorphic microsatellite loci show that Truckee and Carson River populations are highly differentiated from each other and from leopard frogs collected from eastern Nevada sites. Lack of gene flow among and distinct color morphs among the western Nevada populations likely predates the current geographical isolation. Comparisons with other peripheral L. pipiens populations show western Nevada populations have similar levels of gene diversity despite their contemporary isolation (H(E) 0.411, 0.482). Restoration of leopard frog populations in these watersheds will be challenging given well-entrenched nonnative bullfrog populations and major changes to the riparian zone over the past century. Declines of once common amphibian species has become a major conservation concern. Contemporary isolation of populations on a species range periphery such as the leopard frog populations in the Truckee and Carson rivers further exacerbate extirpation risk as these populations are likely to have fewer genetic resources to adaptively respond to rapidly changing biotic and abiotic environments.  相似文献   

18.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated as the causative agent of mass mortalities, population declines, and the extinctions of stream-breeding amphibian species worldwide. While the factors that limit the distribution and abundance of B. dendrobatidis across large geographical regions are fairly well understood, little is known about the distribution of the fungus within localized areas such as individual catchments. The accurate identification of amphibian populations likely to be exposed to the fungus is urgently required for effective disease management. We conducted disease surveys of frogs representing five ecological guilds in south-east Queensland, Australia, and hypothesized that if B. dendrobatidis were responsible for the disappearance of stream-breeding amphibian populations, infection prevalence and intensity would be greatest in frogs breeding in permanent, flowing water. Overall, 30.3% of the 519 frogs we sampled were infected with B. dendrobatidis . However, infections were not evenly distributed across the ecological guilds, being almost completely restricted to frogs breeding at permanent waterbodies. Of these, stream breeders were significantly more likely to be infected than were pond breeders, though the intensity of frogs' infections did not differ significantly between the two guilds. Batrachochytrium dendrobatidis was detected on only one of the 117 frogs that were found at ephemeral ponds, ephemeral streams, or terrestrial sites. These findings provide strong support for the hypothesis that B. dendrobatidis was responsible for many of the unexplained disappearances of stream-breeding amphibian populations in recent decades, and will enable wildlife managers to more accurately focus conservation efforts on those species at highest risk of disease-related decline.  相似文献   

19.
壶菌病与两栖动物的种群衰退   总被引:2,自引:0,他引:2  
两栖类种群全球性衰退是21世纪最紧迫的环境问题之一。越来越多的证据表明壶菌(Batrachochytrium dendrobatidis)与澳大利亚、美洲北部、中部、南部及欧洲的两栖类种群衰退有关。由壶菌引起的壶菌病是变态后的无尾类所患的一种显性传染病,其令人质疑的快速传播及广泛爆发对世界范围内的两栖类种群构成重大威胁。本文对这种致病壶菌的病理学、生态学、生物地理学及其治疗方面的进展进行了综述。  相似文献   

20.
Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969-2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号