首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Following predictions from climatic general circulation models, the effects of perturbations in global climate are expected to be most pronounced in the Northern Hemisphere. Elaborating on a recently developed plant–herbivore–climate model, we explore statistically how different winter climate regimes and density-dependent processes during the past century have affected population dynamics of two arctic ungulate species. Our analyses were performed on the dynamics of six muskox and six caribou populations. In muskoxen, variation in winter climate, mediated through the North Atlantic Oscillation (NAO), explained up to 24% of the variation in interannual abundance, whereas in caribou up to 16% was explained by the NAO. Muskoxen responded negatively following warm and snowy winters, whereas caribou responded negatively to dry winters. Direct and delayed density dependence was recorded in most populations and explained up to 32% and 90% of variations in abundance of muskoxen and caribou, respectively. Received: November 19, 2001 / Accepted: May 28, 2002  相似文献   

2.
Climate, food, density and wildlife population growth rate   总被引:2,自引:0,他引:2  
1. The aim of this study was to derive and evaluate a priori models of the relationship between annual instantaneous population growth rate (r) and climate. These were derived from the numerical response of annual r and food, and the effect of climate on a parameter in the numerical response. The goodness of fit of a range of such deductive models to data on annual r of Soay sheep and red deer were evaluated using information-theoretic (AICc-based) analyses. 2. The analysis for sheep annual r showed negative effects of abundance and negative effects of the interaction of abundance and climate, measured as March rainfall (and winter NAO) in the best fitting models. The analysis for deer annual r showed a negative effect of deer abundance and a positive effect of climate measured as March rainfall (but a negative effect of winter NAO), but no interaction of abundance and climate in the best fitting models. 3. There was most support in the analysis of sheep dynamics for the ratio numerical response and the assumption that parameter J (equilibrium food per animal) was influenced by climate. In the analysis of deer dynamics there was most support for the numerical responses assuming effects of food and density (Ivlev and density, food and density, and additive responses) and slightly less support for the ratio numerical response. The evaluation of such models would be aided by the collection of and incorporation of food data into the analyses.  相似文献   

3.
The North Atlantic Oscillation (NAO) is a large‐scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate‐connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970–2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969–1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969–1978. Even May–June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area.  相似文献   

4.
Understanding how climate influences ecosystems represents a challenge in ecology and natural resource management. Although we know that climate affects plant phenology and herbivore performances at any single site, no study has directly coupled the topography-climate interaction (i.e. the climatological downscaling process) with large-scale vegetation dynamics and animal performances. Here we show how climatic variability (measured by the North Atlantic oscillation 'NAO') interacts with local topography in determining the vegetative greenness (as measured by the normalized difference vegetation index 'NDVI') and the body masses and seasonal movements of red deer (Cervus elaphus) in Norway. Warm springs induced an earlier onset of vegetation, resulting in earlier migration and higher body masses. Increasing values of the winter-NAO corresponded to less snow at low altitude (warmer, more precipitation results in more rain), but more snow at high altitude (colder, more precipitation corresponds to more snow) relative to winters with low winter-NAO. An increasing NAO thus results in a spatially more variable phenology, offering migrating deer an extended period with access to high-quality forage leading to increased body mass. Our results emphasize the importance of incorporating spring as well as the interaction between winter climate and topography when aiming at understanding how plant and animal respond to climate change.  相似文献   

5.
The variability of two fitness-related phenotypic traits (body weight and a mandibular skeletal ratio) was analysed among cohorts and age-classes of red deer in Norway. Phenotypic variation among cohorts was pronounced for calves, yearlings and reproductively mature adults. Fluctuations in cohort-specific mean body weights and skeletal ratios of adults correlated with global climatic variation in winter conditions influenced by the North Atlantic Oscillation while cohorts were in utero. Red deer born following warm winters were smaller than those born after cold winters, and this inter-cohort variability persisted into adulthood. Phenotypic variation among cohorts of red deer influenced by climate change may pose consequences for fitness of cohorts since body size and condition contribute to reproductive success and survival in male and female red deer. In particular, the recent trend of increasingly warm winters in northern Europe and Scandinavia may lead to reduced body size and fecundity of red deer, and perhaps other ungulates, in those areas.  相似文献   

6.
The influence of short- and long-term (cohort) effects of climate and density on the life-histories of ungulates in temperate regions may vary with latitude, habitat, and management practices, but the life-histories of ungulates in the Mediterranean region are less well known. This study examined the short- and long-term effects of rainfall and absolute density on hinds in two of the southernmost populations of red deer (Cervus elaphus hispanicus) in Europe. One population received supplementary forage. Unlike more northerly latitudes, where red deer hinds lose body mass in winter as a result of adverse weather, in the Spanish populations, hinds did not lose body mass. Hinds in the population that received supplementary forage were heavier and more likely to become pregnant than were the hinds in the unsupplemented population. The likelihood of pregnancy occurring was strongly influenced by hind body mass; the proportion of yearlings that became pregnant was consequently lower in the unsupplemented population than in the population that received supplementary forage. Cohort effects on hind body mass (negative for density and positive for rainfall at birth) and on the probability of pregnancy (negative for density at birth) were apparent only in the unsupplemented population, which implies that supplemental feeding may partially compensate for negative density-dependent factors during early growth, and that supplemented deer hinds may experience reduced selection pressures. These results reflect the particular seasonal variation in the abundance and quality of food in Mediterranean habitats. The delayed effects of climate and density at birth on adult hind body mass and the prevalence of pregnancy probably affects population dynamics and constitutes a mechanism by which cohort effects affect the population dynamics in Iberian red deer. The management of Iberian red deer populations should take into account cohort effects and supplemental feeding practices, which can buffer density- and climate-dependent effects and reduce natural selection pressures.  相似文献   

7.
Various ecosystems, including shallow lakes, are suggested to possess alternative stable state dynamics. The response of such systems to environmental change is non-linear and not fully reversible, which calls for identification of feedback mechanisms and subtle changes connected to structural stability. Here, we used a 25-year data series on water chemistry to make inferences on processes prior to a recent shift from a clear to a turbid state in Lake Tåkern, Sweden. Before the shift, annual concentration of total organic nitrogen (TON) described a cyclic pattern, with a periodicity of eight years. Annual TON was negatively correlated with the magnitude of a summer decline in calcium carbonate, treated as a proxy of the seasonal production of submerged vegetation. Cross-correlations of TON and the north Atlantic oscillation (NAO) indicated a possible connection to climate. The strongest correlation was obtained by a three-year lag of the NAO index. Using a set of linear time series models, the most parsimonious model was a 3rd order autoregressive model with NAO, delayed three years, as a covariate. Analyses of seasonality indicated that the delayed NAO signal was strongly correlated with summer TON. Also, the autocorrelation function was very similar for these two time series, and autoregressive models including NAO as a covariate were strongly supported (sum of Akaike weights=0.93). These results indicate that climate may have contributed to the regime shift through lowered macrophyte production at the time of the shift, and therefore most likely also a depleted resilience of the clear water state. The delayed effect of climate is suggested to result from indirect and inter-year dependent response of submerged vegetation to fish kills during harsh winters.  相似文献   

8.
Aim We aimed to describe the large‐scale patterns in population density of roe deer Caprelous capreolus in Europe and to determine the factors shaping variation in their abundance. Location Europe. Methods We collated data on roe deer population density from 72 localities spanning 25° latitude and 48° longitude and analysed them in relation to a range of environmental factors: vegetation productivity (approximated by the fraction of photosynthetically active radiation) and forest cover as proxies for food supply, winter severity, summer drought and presence or absence of large predators (wolf, Canis lupus, and Eurasian lynx, Lynx lynx), hunter harvest and a competitor (red deer, Cervus elaphus). Results Roe deer abundance increased with the overall productivity of vegetation cover and with lower forest cover (sparser forest cover means that a higher proportion of overall plant productivity is allocated to ground vegetation and thus is available to roe deer). The effect of large predators was relatively weak in highly productive environments and in regions with mild climate, but increased markedly in regions with low vegetation productivity and harsh winters. Other potentially limiting factors (hunting, summer drought and competition with red deer) had no significant impact on roe deer abundance. Main conclusions The analyses revealed the combined effect of bottom‐up and top‐down control on roe deer: on a biogeographical scale, population abundance of roe deer has been shaped by food‐related factors and large predators, with additive effects of the two species of predators. The results have implications for management of roe deer populations in Europe. First, an increase in roe deer abundance can be expected as environmental productivity increases due to climate change. Secondly, recovery plans for large carnivores should take environmental productivity and winter severity into account when predicting their impact on prey.  相似文献   

9.
1. Experimental studies have indicated in freshwater ecosystems that a shift in dominance from submerged to free‐floating macrophytes may occur with climate change because of increased water surface temperatures and eutrophication. Field evidence is, however, rare. 2. Here, we analysed long‐term (26 years) dynamics of macrophyte cover in Dutch ditches in relation to Dutch weather variables and the North Atlantic Oscillation (NAO) winter index. The latter appears to be a good proxy for Dutch weather conditions. 3. Cover of both free‐floating macrophytes and evergreen overwintering submerged macrophytes was positively related to mild winters (positive NAO winter index). On the other hand, high cover of submerged macrophytes that die back in winter coincided with cold winters (negative NAO winter index). Our results therefore suggest that the effect of weather on macrophyte species depends strongly on their overwintering strategy. 4. The positive relation of free‐floating macrophytes with the NAO winter index was significantly stronger in ditches in organic soil than in those in inorganic soil. This may be because of increased nutrient loading associated with increased decomposition of organic matter and increased run‐off to these ditches during mild wet winters. 5. Our results suggest that mild winters in a changing climate may cause submerged macrophytes with an evergreen overwintering strategy and free‐floating macrophytes to outcompete submerged macrophytes that die back in winter.  相似文献   

10.
Population dynamics of the gray sided-vole,Clethrionomys rufocanus, in Hokkaido, Japan were described on the basis of 225 time series (being from 12 to 31 years long); 194 of the time series have a length of 23 years or longer. The time series were classified into 11 groups according to geographic proximity and topographic characteristics of the island of Hokkaido. Mean abundance varied among populations from 1.07 to 21.07 individuals per 150 trap-nights. The index of variability for population fluctuation (s-index) ranged from 0.204 to 0.629. Another index for population variability (amplitude on log-10 scale) ranged from 0.811 to 2.743. Mean abundance and variability of populations were higher in the more northern and eastern regions of the island. Most populations, except for the southernmost populations, exhibited significant direct density-dependence in population growth. Detection rate for delayed density-dependence varied among groups from 0% to 22.6%. Both direct and delayed density-dependence tended to be stronger in the more northern and eastern populations. The proportion of cyclic populations was higher in the northern-eastern areas than that in the southern-western areas. There was a clear gradient from the asynchronous populations in southwest, to the highly synchronized populations in the northeast.  相似文献   

11.
Regime shifts in the breeding of an Atlantic puffin population   总被引:1,自引:0,他引:1  
Timing of breeding is a key factor determining the reproductive success in bird populations and known to be affected by climate fluctuations. We investigated the long‐term (1978–2002) relationship between climate and hatching date within a population of Atlantic puffin Fratercula arctica at Røst in the Norwegian Sea. The timing of puffin breeding was found to be influenced by the North Atlantic Oscillation winter index (NAO). We isolated two temporal regimes, one where NAO had a significant effect on hatching date (1978–1986 and 1995–2002) and one where these variables were independent (1987–1994). Hatching date could be modelled using, in addition to NAO, hatching date and food abundance in the preceding breeding season (possibly proxies of parental effort). The models remained significant for regime 1 but not for regime 2. NAO differed between the two regimes suggesting that the shifts were induced by climate change, possibly via its effect on the availability of prey in the preceding year. The novelty of our study is the identification of temporal regimes in the effects of climate within one population.  相似文献   

12.
1. Global change may strongly affect population dynamics, but mechanisms remain elusive. Several Arctic goose species have increased considerably during the last decades. Climate, and land-use changes outside the breeding area have been invoked as causes but have not been tested. We analysed the relationships between conditions on wintering and migration staging areas, and survival in Svalbard pink-footed geese Anser brachyrhynchus. Using mark-recapture data from 14 winters (1989-2002) we estimated survival rates and tested for time trends, and effects of climate, goose density and land-use. 2. Resighting rates differed for males and females, were higher for birds recorded during the previous winter and changed smoothly over time. Survival rates did not differ between sexes, varied over time with a nonsignificant negative trend, and were higher for the first interval after marking (0.88-0.97) than afterwards (0.74-0.93). Average survival estimates were 0.967 (SE 0.026) for the first and 0.861 (SE 0.023) for all later survival intervals. 3. We combined 16 winter and spring climate covariates into two principal components axes. F1 was related to warm/wet winters and an early spring on the Norwegian staging areas and F2 to dry/cold winters. We expected that F1 would be positively related to survival and F2 negatively. F1 explained 23% of survival variation (F1,10=3.24; one-sided P=0.051) when alone in a model and 28% (F1,9=4.50; one-sided P=0.031) in a model that assumed a trend for survival. In contrast, neither F2 nor density, land-use, or scaring practices on important Norwegian spring staging areas had discernible effects on survival. 4. Climate change may thus affect goose population dynamics, with warmer winters and earlier springs enhancing survival and fecundity. A possible mechanism is increased food availability on Danish wintering and Norwegian staging areas. As geese are among the main herbivores in Arctic ecosystems, climate change, by increasing goose populations, may have important indirect effects on Arctic vegetation. Our study also highlights the importance of events outside the breeding area for the population dynamics of migrant species.  相似文献   

13.
We studied both the short‐ and long‐term effects of density on three life history traits of a red deer population inhabiting a temperate forest. Both male and female body mass increased when population density decreased, but male mass changed to a greater extent than female mass. Density did not influence female survival irrespective of age, however, survival of males was lower at high density for all age classes except the prime‐age class. Pregnancy rates of primiparous females increased markedly with decreasing density, whereas those of adult hinds were fairly constant and unrelated to density. For both sexes, of the studied life history traits we detected a long‐term effect of density at birth (cohort effect) only on body mass. These results suggest that density influences life history traits in the same way as factors of environmental variation such as climate. In this population we did not find any evidence for an influence of climatic conditions on life history traits of red deer. Both mild winters and the absence of summer droughts during the study period could account for such an absence of climatic effects. We interpreted our results to show that 1) as expected for a highly dimorphic and polygynous species such as red deer, male traits showed consistently higher sensitivity to variation in density than female traits, illustrating possible costs caused by sexual selection in males, 2) the female‐based Eberhardt's model according to which increasing density should sequentially affect juvenile survival, reproductive rates of primiparous females, reproductive rates of adults and lastly adult survival was only partly supported because we found that pregnancy rate of primiparous females rather than juvenile survival was the most sensitive trait to variation in density. We propose that including variation in male traits would improve the accuracy of models of population dynamics of large mammals, at least for highly dimorphic species. Because the population we studied was not fenced, we only measured apparent survival. We discuss how dispersal, in relation to the phenotypic quality of young deer, might be a potential regulating factor under such conditions.  相似文献   

14.
Attempts to relate species differences in population dynamics to variation in life histories rely on the assumption that the causes of contrasts in demography are sufficiently simple to be derived from first principles. Here, we investigate the causes of contrasts in dynamics between two ungulate populations on Hebridean islands (red deer and Soay sheep) and show that differences in stability, as well as in the effects of variation in density and climate, are related to differences in timing of reproduction relative to seasonal variation in resource abundance. In both populations, attempts to predict changes in population size sufficiently accurately for the results to be useful for management purposes require a knowledge of the responses of different age and sex categories to changes in density and climate, as well as of population structure.  相似文献   

15.
Increasing evidence suggests that climate change has consequences on avian breeding phenology. Here, variations in laying date and clutch size of great tit Parus major and blue tit Parus caeruleus within and between breeding populations through the western Palaearctic are examined in relation to climatic fluctuations, measured by the winter North Atlantic Oscillation (NAO) index. Within and across breeding sites, laying date was related to winter‐NAO index such that great and blue tit females lay earlier after warmer, moister winters (positive values of winter NAO‐index). The present study shows that for most populations there is an advancement of laying date, but the rate of change with respect to NAO significantly differed geographically across the western Palaearctic and did not differ between species. However, clutch size of great and blue tits was not affected by climatic fluctuations, presumably because the whole season is being shifted, but not in relation to food supplies. These combined analyses for the two species controlled for potentially confounding variables such as latitude, longitude, elevation and habitat of each study site.  相似文献   

16.
Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of climate. The North Atlantic oscillation (NAO) is a large-scale climate phenomenon that has been shown to influence the population dynamics of some animals. Although effects of the NAO on vertebrate population dynamics have been studied, it remains uncertain whether it broadly predicts the impact of weather on species. We examined the ability of local weather data and the NAO to explain the annual variation in population dynamics of white-tailed ptarmigan ( Lagopus leucurus) in Rocky Mountain National Park, USA. We performed canonical correlation analysis on the demographic subspace of ptarmigan and local-climate subspace defined by the empirical orthogonal function (EOF) using data from 1975 to 1999. We found that two subspaces were significantly correlated on the first canonical variable. The Pearson correlation coefficient of the first EOF values of the demographic and local-climate subspaces was significant. The population density and the first EOF of local-climate subspace influenced the ptarmigan population with 1-year lags in the Gompertz model. However, the NAO index was neither related to the first two EOF of local-climate subspace nor to the first EOF of the demographic subspace of ptarmigan. Moreover, the NAO index was not a significant term in the Gompertz model for the ptarmigan population. Therefore, local climate had stronger signature on the demography of ptarmigan than did a large-scale index, i.e., the NAO index. We conclude that local responses of wildlife populations to changing climate may not be adequately explained by models that project large-scale climatic patterns.  相似文献   

17.
The phenology of spring migration depends on the severity of the preceding winter and approaching spring. This severity can be quantified using the North Atlantic Oscillation (NAO) index; positive values indicate mild winters. Although milder winters are correlated with earlier migration in many birds in temperate regions, few studies have addressed how climate‐induced variation in spring arrival relates to breeding success. In northern Europe, the NAO‐index correlates with ice cover and timing of ice break‐up of the Baltic Sea. Ice cover plays an important role for breeding waterfowl, since the timing of ice break‐up constrains both spring arrival and onset of breeding. We studied the effects of the winter‐NAO‐index and timing of ice break‐up on spring migration, laying date, clutch size, female body condition at hatching and fledging success of a short‐distance migrant common eider (Somateria mollissima) population from SW Finland, the Baltic Sea, 1991–2004 (migration data 1979–2004). We also examined the correlation between the NAO‐index and the proportion of juvenile eiders in the Danish hunting bag, which reflects the breeding success on a larger spatial scale. The body condition of breeding females and proportion of juveniles in the hunting bag showed significant positive correlations with the NAO, whereas arrival dates showed positive correlations and clutch size and fledging success showed negative correlations with the timing of ice break‐up. The results suggest that climate, which also affects ice conditions, has an important effect on the fledging success of eiders. Outbreaks of duckling disease epidemics may be the primary mechanism underlying this effect. Eider females are in poorer condition after severe winters and cannot allocate as much resources to breeding, which may impair the immune defense of ducklings. Global climate warming is expected to increase the future breeding success of eiders in our study population.  相似文献   

18.
Aphid population dynamics during the season show a characteristic pattern with rapid increase in numbers at the beginning followed by a sudden drop in the middle of the season. This pattern is usually associated with predation and/or change in food quality during the summer. By developing a mechanistic model of aphid population dynamics we show that this pattern can arise from density-dependent dispersal behaviour of aphids. The dynamics produced by the model were similar to those observed in real populations of the alder aphid (Pterocallis alni). The two mechanisms required for these oscillations to arise were the perception of density through the number of contacts with other individuals and the inter-generational transfer of information (the maternal effect). Both mechanisms are examples of delayed density-dependence and, therefore, this study adds to the evidence that delayed density-dependence might cause complex population dynamics. To reproduce the seasonal dynamics of the alder aphid with the model, the maternal effect was essential, indicating that this could be an important factor in alder aphid dynamics. According to our model, external regulations (e.g., predation and/or change in food quality) were not required to explain the highly oscillatory population dynamics of aphids during a season.  相似文献   

19.
Among the most striking changes in ecosystems are those that happen abruptly and resist return to the original condition (i.e., regime shifts). This frequently involves conspicuous changes in the abundance of one species (e.g., an oubreaking pest or keystone species). Alternate attractors in population dynamics could explain switches between low and high levels of abundance, and could underlie some cases of regime shifts in ecosystems; this longstanding theoretical possibility has been difficult to test in nature. We compared the ability of an alternate attractors model versus two competing models to explain population fluctuations in the tree-killing bark beetle, Dendroctonus frontalis. Frequency distributions of abundance were distinctly bimodal, a prediction of the alternate attractors model, strongly indicating the lack of a single, noisy equilibrium. Time series abundance data refuted the existence of strong delayed density-dependence or nonlinearities, as required by the endogenous cycles model. The model of alternate attractors was further supported by the existence of positive density-dependence at intermediate beetle abundances. Experimental manipulations show that interactions with competitors and shared enemies could create a locally stable equilibrium in small populations of D. frontalis. High variation among regions and years in the abundance of predators and competitors could permit switches between alternate states. Dendroctonus frontalis now provides the strongest case that we know of for alternate attractors in natural population dynamics. The accompanying demographic instability appears to underlie spatially extensive outbreaks that have lasting impacts on forest ecosystems. Understanding feedbacks in populations with alternate attractors can help to identify thresholds underlying regime shifts, and potentially manage them to avoid undesirable impacts.  相似文献   

20.
Veeroja R  Tilgar V  Kirk A  Tõnisson J 《Oecologia》2008,154(4):703-713
Weather variables can influence life-history traits of ungulates. In this study, we assessed the suitability of regional climate indices including the NAO and two measures of local climate—the maximal extent of ice on the Baltic Sea (MIE) and absolute values of its annual deviations from the multi-year mean (VMIE)—to examine how density-independent processes influence moose body size and fecundity. We predicted that both winter severity (large values of MIE) and variability (large values of VMIE) depress moose traits (e.g., severe winters increase energy expenditure because of large snow depth or low temperatures, while the warmer than average winters may impose greater energetic demands on thermoregulation due to wet and windy weather, or may have indirect negative effects on summer foraging conditions). We estimated direct, delayed (lag) and cumulative effects of each climate measure. Both MIE and VMIE negatively affected jawbone length, with the effect size varying between the respective climatic indices and among age classes. In contrast to results obtained using local climatic variables, the NAO index had no significant effect on jawbone length. The probability of multiple ovulation was negatively influenced by direct effects of VMIE and delayed effects of MIE and NAO. We conclude that MIE and VMIE capture different aspects of the local climate and that these indices can be used in parallel as determinants of growth and fecundity of northern ungulates in coastal regions of the Baltic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号