首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass vaccination campaigns have drastically reduced the burden of infectious diseases. Unfortunately, in recent years several infectious diseases have re-emerged. Pertussis poses a well-known example. Inspired by pertussis, we study, by means of an epidemic model, the population and evolutionary dynamics of a pathogen population under the pressure of vaccination. A distinction is made between infection in immunologically naive individuals (primary infection) and infection in individuals whose immune system has been primed by vaccination or infection (secondary infection). The results show that (i) vaccination with an imperfect vaccine may not succeed in reducing the infection pressure if the transmissibility of secondary infections is higher than that of primary infections; (ii) pathogen strains that are able to evade the immunity induced by vaccination can only spread if escape mutants incur no or only a modest fitness cost and (iii) the direction of evolution depends crucially on the distribution of the different types of susceptibles in the population. We discuss the implications of these results for the design and use of vaccines that provide temporary immunity.  相似文献   

2.
Spreading disease with transport-related infection   总被引:1,自引:0,他引:1  
Transportation among regions is found as one of the main factors which affect the outbreak of diseases. It will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each city without transport-related infection. In this paper, a mathematical model is proposed to demonstrate the dynamics of such disease propagation between two regions (or cities) due to the population dispersal and infection on transports. Further, our analysis shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense that both the absolute and relative size of patients increase. This suggests that it is very essential to strengthen restrictions of passengers once we know infectious diseases appeared.  相似文献   

3.
The inverse relationship between the incidence and the average age of first infection for immunizing agents has become a basic tenet in the theory underlying the mathematical modeling of infectious diseases. However, this relationship assumes that the infection has reached an endemic equilibrium. In reality, most infectious diseases exhibit seasonal and/or long-term oscillations in incidence. We use a seasonally forced age-structured SIR model to explore the relationship between the number of cases and the average age of first infection over a single epidemic cycle. Contrary to the relationship for the equilibrium dynamics, we find that the average age of first infection is greatest at or near the peak of the epidemic when mixing is homogeneous. We explore the sensitivity of our findings to assumptions about the natural history of infection, population mixing behavior, the mechanism of seasonality, and of the timing of case reporting in relation to the infectious period. We conclude that seasonal variation in the average age of first infection tends to be greatest for acute infections, and the relationship between the number of cases and the average age of first infection can vary depending on the nature of population mixing and the natural history of infection.  相似文献   

4.
Social groupings, population dynamics and population movements of animals all give rise to spatio-temporal variations in population levels. These variations may be of crucial importance when considering the spread of infectious diseases since infection levels do not increase unless there is a sufficient pool of susceptible individuals. This paper explores the impact of social groupings on the potential for an endemic disease to develop in a spatially explicit model system. Analysis of the model demonstrates that the explicit inclusion of space allows asymmetry between groups to arise when this was not possible in the equivalent spatially homogeneous system. Moreover, differences in movement behaviours for susceptible and infected individuals gives rise to different spatial profiles for the populations. These profiles were not observed in previous work on an epidemic system. The results are discussed in an ecological context with reference to furious and dumb strains of infectious diseases.  相似文献   

5.
Early mathematical representations of infectious disease dynamics assumed a single, large, homogeneously mixing population. Over the past decade there has been growing interest in models consisting of multiple smaller subpopulations (households, workplaces, schools, communities), with the natural assumption of strong homogeneous mixing within each subpopulation, and weaker transmission between subpopulations. Here we consider a model of SIRS (susceptible-infectious-recovered-susceptible) infection dynamics in a very large (assumed infinite) population of households, with the simplifying assumption that each household is of the same size (although all methods may be extended to a population with a heterogeneous distribution of household sizes). For this households model we present efficient methods for studying several quantities of epidemiological interest: (i) the threshold for invasion; (ii) the early growth rate; (iii) the household offspring distribution; (iv) the endemic prevalence of infection; and (v) the transient dynamics of the process. We utilize these methods to explore a wide region of parameter space appropriate for human infectious diseases. We then extend these results to consider the effects of more realistic gamma-distributed infectious periods. We discuss how all these results differ from standard homogeneous-mixing models and assess the implications for the invasion, transmission and persistence of infection. The computational efficiency of the methodology presented here will hopefully aid in the parameterisation of structured models and in the evaluation of appropriate responses for future disease outbreaks.  相似文献   

6.
In this paper, an SEIS epidemic model is proposed to study the effect of transport-related infection on the spread and control of infectious disease. New result implies that traveling of the exposed (means exposed but not yet infectious) individuals can bring disease from one region to other regions even if the infectious individuals are inhibited from traveling among regions. It is shown that transportation among regions will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each isolated region without transport-related infection. In addition, our analysis shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense of that both the absolute and relative size of patients increase. This suggests that it is very essential to strengthen restrictions of passengers once we know infectious diseases appeared.  相似文献   

7.
Theoretical studies of wildlife population dynamics have proved insightful for sustainable management, where the principal aim is to maximize short-term yield, without risking population extinction. Surprisingly, infectious diseases have not been accounted for in harvest models, which is a major oversight because the consequences of parasites for host population dynamics are well-established. Here, we present a simple general model for a host species subject to density dependent reproduction and seasonal demography. We assume this host species is subject to infection by a strongly immunizing, directly transmitted pathogen. In this context, we show that the interaction between density dependent effects and harvesting can substantially increase both disease prevalence and the absolute number of infectious individuals. This effect clearly increases the risk of cross-species disease transmission into domestic and livestock populations. In addition, if the disease is associated with a risk of mortality, then the synergistic interaction between hunting and disease-induced death can increase the probability of host population extinction.  相似文献   

8.
The theory of insect population dynamics has shown that heterogeneity in natural-enemy attack rates is strongly stabilizing. We tested the usefulness of this theory for outbreaking insects, many of which are attacked by infectious pathogens. We measured heterogeneity among gypsy moth larvae in their risk of infection with a nucleopolyhedrovirus, which is effectively heterogeneity in the pathogen's attack rate. Our data show that heterogeneity in infection risk in this insect is so high that it leads to a stable equilibrium in the models, which is inconsistent with the outbreaks seen in North American gypsy moth populations. Our data further suggest that infection risk declines after epidemics, in turn suggesting that the model assumption of constant infection risk is incorrect. We therefore constructed an alternative model in which natural selection drives fluctuations in infection risk, leading to reductions after epidemics because of selection for resistance and increases after epidemics because of a cost of resistance. This model shows cycles even for high heterogeneity, and experiments confirm that infection risk is indeed heritable. The model is very general, and so we argue that natural selection for disease resistance may play a role in many insect outbreaks.  相似文献   

9.
Real-time vaccination following an outbreak can effectively mitigate the damage caused by an infectious disease. However, in many cases, available resources are insufficient to vaccinate the entire at-risk population, logistics result in delayed vaccine deployment, and the interaction between members of different cities facilitates a wide spatial spread of infection. Limited vaccine, time delays, and interaction (or coupling) of cities lead to tradeoffs that impact the overall magnitude of the epidemic. These tradeoffs mandate investigation of optimal strategies that minimize the severity of the epidemic by prioritizing allocation of vaccine to specific subpopulations. We use an SIR model to describe the disease dynamics of an epidemic which breaks out in one city and spreads to another. We solve a master equation to determine the resulting probability distribution of the final epidemic size. We then identify tradeoffs between vaccine, time delay, and coupling, and we determine the optimal vaccination protocols resulting from these tradeoffs.  相似文献   

10.
Ecological interference between unrelated diseases, caused by the temporary or permanent removal of individuals susceptible to one disease following infection with another, might be an important mechanism underlying epidemics. In this paper, we explore the potential dynamic consequences of interference by analyzing a two-disease model. By studying the stability domain of the model's equilibria, we find that the stable region of the two-disease endemic state becomes increasingly smaller as the strength of interference (largely determined by the disease-induced mortality) increases. When seasonal changes are included in the transmission rates, the bifurcation structure of the model's periodic cycles reveals that when the two diseases have similar mean transmission rates, multiple attractors in which the two diseases are strongly correlated can coexist, and that when the two diseases have very different mean transmission rates, the one with higher mean transmission rate may determine the dynamics of the system, with the other infection mimicking the behavior. We conclude that ecological interference can have important effects on the dynamical pattern of interacting diseases, the extent of which is determined by the epidemiological features of the diseases, their mean transmission rates in particular.  相似文献   

11.
Spatial heterogeneity of a host population of mobile agents has been shown to be a crucial determinant of many aspects of disease dynamics, ranging from the proliferation of diseases to their persistence and to vaccination strategies. In addition, the importance of regional and structural differences grows in our modern world. Little is known, though, about the consequences when traits of a disease vary regionally. In this paper, we study the effect of a spatially varying per capita infection rate on the behaviour of livestock diseases. We show that the prevalence of an infectious livestock disease in a community of animals can paradoxically decrease owing to transport connections to other communities in which the risk of infection is higher. We study the consequences for the design of livestock transportation restriction measures and establish exact criteria to discriminate those connections that increase the level of infection in the community from those that decrease it.  相似文献   

12.
In stochastic modelling of infectious spread, it is often assumed that infection confers permanent immunity, a susceptible-infective-removed (SIR) model. We show how results concerning long-term (endemic) behaviour may be extended to a susceptible-infective-removed-susceptible (SIRS) model, in which immunity is temporary. Since the full SIRS model with demography is rather intractable, we also consider two simpler models: the susceptible-infective-susceptible (SIS) model with demography, in which there is no immunity; and the SIRS model in a closed population. For each model, we first analyse a deterministic model, then approximate the quasi-stationary distribution (equilibrium distribution conditional upon non-extinction of infection) using a moment closure technique. We look in particular at the effect of the immune period upon infection prevalence and upon time to fade-out of infection. Our main findings are that a shorter average immune period leads to higher infection prevalence in quasi-stationarity, and to longer persistence of infection in the population.  相似文献   

13.
14.
Zoonoses from wildlife threaten global public health. Hendra virus is one of several zoonotic viral diseases that have recently emerged from Pteropus species fruit-bats (flying-foxes). Most hypotheses regarding persistence of Hendra virus within flying-fox populations emphasize horizontal transmission within local populations (colonies) via urine and other secretions, and transmission among colonies via migration. As an alternative hypothesis, we explore the role of recrudescence in persistence of Hendra virus in flying-fox populations via computer simulation using a model that integrates published information on the ecology of flying-foxes, and the ecology and epidemiology of Hendra virus. Simulated infection patterns agree with infection patterns observed in the field and suggest that Hendra virus could be maintained in an isolated flying-fox population indefinitely via periodic recrudescence in a manner indistinguishable from maintenance via periodic immigration of infected individuals. Further, post-recrudescence pulses of infectious flying-foxes provide a plausible basis for the observed seasonal clustering of equine cases. Correct understanding of the infection dynamics of Hendra virus in flying-foxes is fundamental to effectively managing risk of infection in horses and humans. Given the lack of clear empirical evidence on how the virus is maintained within populations, the role of recrudescence merits increased attention.  相似文献   

15.
The epidemic dynamics of infectious diseases vary among cities, but it is unclear how this is caused by patterns of infectious contact among individuals. Here, we ask whether systematic differences in human mobility patterns are sufficient to cause inter-city variation in epidemic dynamics for infectious diseases spread by casual contact between hosts. We analyse census data on the mobility patterns of every full-time worker in 48 Canadian cities, finding a power-law relationship between population size and the level of organization in mobility patterns, where in larger cities, a greater fraction of workers travel to work in a few focal locations. Similarly sized cities also vary in the level of organization in their mobility patterns, equivalent on average to the variation expected from a 2.64-fold change in population size. Systematic variation in mobility patterns is sufficient to cause significant differences among cities in infectious disease dynamics—even among cities of the same size—according to an individual-based model of airborne pathogen transmission parametrized with the mobility data. This suggests that differences among cities in host contact patterns are sufficient to drive differences in infectious disease dynamics and provides a framework for testing the effects of host mobility patterns in city-level disease data.  相似文献   

16.
Models for the diversity and evolution of pathogens have branched into two main directions: the adaptive dynamics of quantitative life-history traits (notably virulence) and the maintenance and invasion of multiple, antigenically diverse strains that interact with the host's immune memory. In a first attempt to reconcile these two approaches, we developed a simple modelling framework where two strains of pathogens, defined by a pair of life-history traits (infectious period and infectivity), interfere through a given level of cross-immunity. We used whooping cough as a potential example, but the framework proposed here could be applied to other acute infectious diseases. Specifically, we analysed the effects of these parameters on the invasion dynamics of one strain into a population, where the second strain is endemic. Whereas the deterministic version of the model converges towards stable coexistence of the two strains in most cases, stochastic simulations showed that transient epidemic dynamics can cause the extinction of either strain. Thus ecological dynamics, modulated by the immune parameters, eventually determine the adaptive value of different pathogen genotypes. We advocate an integrative view of pathogen dynamics at the crossroads of immunology, epidemiology and evolution, as a way towards efficient control of infectious diseases.  相似文献   

17.
Theoretical models of disease dynamics on networks can aid our understanding of how infectious diseases spread through a population. Models that incorporate decision-making mechanisms can furthermore capture how behaviour-driven aspects of transmission such as vaccination choices and the use of non-pharmaceutical interventions (NPIs) interact with disease dynamics. However, these two interventions are usually modelled separately. Here, we construct a simulation model of influenza transmission through a contact network, where individuals can choose whether to become vaccinated and/or practice NPIs. These decisions are based on previous experience with the disease, the current state of infection amongst one''s contacts, and the personal and social impacts of the choices they make. We find that the interventions interfere with one another: because of negative feedback between intervention uptake and infection prevalence, it is difficult to simultaneously increase uptake of all interventions by changing utilities or perceived risks. However, on account of vaccine efficacy being higher than NPI efficacy, measures to expand NPI practice have only a small net impact on influenza incidence due to strongly mitigating feedback from vaccinating behaviour, whereas expanding vaccine uptake causes a significant net reduction in influenza incidence, despite the reduction of NPI practice in response. As a result, measures that support expansion of only vaccination (such as reducing vaccine cost), or measures that simultaneously support vaccination and NPIs (such as emphasizing harms of influenza infection, or satisfaction from preventing infection in others through both interventions) can significantly reduce influenza incidence, whereas measures that only support expansion of NPI practice (such as making hand sanitizers more available) have little net impact on influenza incidence. (However, measures that improve NPI efficacy may fare better.) We conclude that the impact of interference on programs relying on multiple interventions should be more carefully studied, for both influenza and other infectious diseases.  相似文献   

18.
We present a mathematical model for malaria treatment and spread of drug resistance in an endemic population. The model considers treated humans that remain infectious for some time and partially immune humans who are also infectious to mosquitoes although their infectiousness is always less than their non immune counterparts. The model is formulated by considering delays in the latent periods in both mosquito and human populations and in the period within which partial immunity is lost. Qualitative analysis of the model including positivity and boundedness of solutions is performed. Analysis of the reproductive numbers shows that if the treated humans become immediately uninfectious to mosquitoes then treatment will always reduce the number of sensitive infections. If however treated humans are infectious then for treatment to effectively reduce the number of sensitive infections, the ratio of the infectious period of the treated humans to the infectious period of the untreated humans multiplied by the ratio of the transmission rate from a treated human to the transmission rate of an untreated human should be less than one. Our results show that the spread of drug resistance with treatment as a control strategy depends on the ratio of the infectious periods of treated and untreated humans and on the transmission rates from infectious humans with resistant and sensitive infections. Numerical analysis is performed to assess the effects of treatment on the spread of resistance and infection. The study provides insight into the possible intervention strategies to be employed in malaria endemic populations with resistant parasites by identifying important parameters.  相似文献   

19.
20.
The drive to understand the invasion, spread and fade out of infectious disease in structured populations has produced a variety of mathematical models for pathogen dynamics in metapopulations. Very rarely are these models fully coupled, by which we mean that the spread of an infection within a subpopulation affects the transmission between subpopulations and vice versa. It is also rare that these models are accessible to biologists, in the sense that all parameters have a clear biological meaning and the biological assumptions are explained. Here we present an accessible model that is fully coupled without being an individual-based model. We use the model to show that the duration of an epidemic has a highly non-linear relationship with the movement rate between subpopulations, with a peak in epidemic duration appearing at small movement rates and a global maximum at large movement rates. Intuitively, the first peak is due to asynchrony in the dynamics of infection between subpopulations; we confirm this intuition and also show the peak coincides with successful invasion of the infection into most subpopulations. The global maximum at relatively large movement rates occurs because then the infectious agent perceives the metapopulation as if it is a single well-mixed population wherein the effective population size is greater than the critical community size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号