首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green turtles (Chelonia mydas) swim from foraging grounds along the Brazilian coast to Ascension Island to nest, over 2200 km distant in the middle of the equatorial Atlantic. To test the hypothesis that turtles use wind-borne cues to locate Ascension Island we found turtles that had just completed nesting and then moved three individuals 50 km northwest (downwind) of the island and three individuals 50 km southeast (upwind). Their subsequent movements were tracked by satellite. Turtles released downwind returned to Ascension Island within 1, 2 and 4 days, respectively. By contrast, those released upwind had far more difficulty in relocating Ascension Island, two eventually returning after 10 and 27 days and the third heading back to Brazil after failing to find its way back to the island. These findings strongly support the hypothesis that wind-borne cues are used by turtles to locate Ascension Island.  相似文献   

2.
Sea turtles have recently been shown to have the sensory ability to use magnetic information for guidance in the open ocean, although the importance of different potential navigational cues remains unknown. Between May and August 2001, we satellite-tracked green turtles, Cheloniamydas, during their >2000-km postnesting migration from Ascension Island to Brazil, following five individuals both during their transoceanic crossing and while on the Brazilian coast. None of the turtles travelled directly to its final destination but, instead, there were extended (up to 792 km) movements along the coast after the oceanic crossings. The extent of movement along the coast was unrelated to the oceanic crossing route. For example, individuals whose final destination was in the north of Brazil did not follow a more northerly oceanic crossing than those with a more southerly final destination. These observations show that green turtles returning from Ascension Island do not swim directly to their final destination, but instead conduct migration in two distinct phases: a fairly direct open ocean crossing, following which they turn north or south along the coast to reach their final destination. This long-distance migration may therefore be conducted without turtles needing to resort to sophisticated navigational skills. These previously unidentified long coastal movements may heighten the risk of turtles being captured by fishermen. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

3.
Sea turtles are known to perform long-distance, oceanic migrations between disparate feeding areas and breeding sites, some of them located on isolated oceanic islands. These migrations demonstrate impressive navigational abilities, but the sensory mechanisms used are still largely unknown. Green turtles breeding at Ascension Island perform long oceanic migrations (>2200 km) between foraging areas along the Brazilian coast and the isolated island. By performing displacement experiments of female green turtles tracked by satellite telemetry in the waters around Ascension Island we investigated which strategies most probably are used by the turtles in locating the island. In the present paper we analysed the search trajectories in relation to alternative navigation strategies including the use of global geomagnetic cues, ocean currents, celestial cues and wind. The results suggest that the turtles did not use chemical information transported with ocean currents. Neither did the results indicate that the turtles use true bi-coordinate geomagnetic navigation nor did they use indirect navigation with respect to any of the available magnetic gradients (total field intensity, horizontal field intensity, vertical field intensity, inclination and declination) or celestial cues. The female green turtles successfully locating Ascension Island seemed to use a combination of searching followed by beaconing, since they searched for sensory contact with the island until they reached positions NW and N of the Island and from there presumably used cues transported by wind to locate the island during the final stages of the search.  相似文献   

4.
Sea turtle populations underwent severe decline in historical times, mainly through harvesting eggs and adults on nesting beaches. With the reduction of this threat in many areas, coupled with other conservation actions, some populations have demonstrated encouraging recovery, although remaining below their previous levels and undergone additional modern threats such as incidental capture in fisheries and pollution. Trends in sea turtle populations have usually been assessed through monitoring of females or nests on nesting beaches. Here we present data from a 22-year monitoring period for a juvenile green sea turtle Chelonia mydas mixed-stock in southeastern Brazil that were incidentally captured in passive non-lethal pound nets. A total of 3639 green turtles were captured in 5323 fishing days.pound−1 with mortality rate of 2%. Captures occurred in all months, but bycatch rates, excluding recapture events, were higher in September and October, probably due to the recruitment of turtles migrating from southern areas, as well as recruits from the oceanic zone. Capture rates increased by 9.2% per year in the period from 1995 to 2016, in line with increasing source populations, particularly the main source contributor at Ascension Island, but also Trindade Island (Brazil) and Aves Island (Venezuela). Mean Curved Carapace Length of green turtles was higher during austral summer/early autumn and decreased markedly in May, probably due to the small-sized individuals that recruited to the study site. We show that the incidental capture of sea turtles in non-lethal fisheries, such as Brazilian pound nets, could also provide data on trends of populations nesting in distant places, and can contribute to the assessment of population status of sea turtles within Regional Management Units throughout the Atlantic Ocean.  相似文献   

5.
夏中荣  古河祥 《四川动物》2012,31(3):435-438,513
自2001年来,惠东港口海龟国家级自然保护区已成功地利用卫星追踪了21只海龟的洄游路线。本文利用美国卫星信号发射器(Tag)和法国Argos系统追踪3只成年雌性绿海龟。跟踪海龟"西沙"和"南沙"26d,二者均在海口市附近海域消失;"东沙"从阳江市海陵岛出发,取东南向至菲律宾,然后沿菲律宾西海岸向南,最后在巴拉望岛西侧海域逗留,共追踪111d。该试验说明港口海龟具有不同的洄游线路,偏爱沿岸的浅海洄游;洄游路线与等温线之间无显著关系;海龟洄游具有明确的目的地。建议政府相关部门采取科学策略来保护海龟。  相似文献   

6.
Young (mean mass 735 g) green turtles (Chelonia mydas) were able to swim in a water channel at sustained speeds between 0-14 and 0-35 m.s-1. Oxygen consumption at rest was was 0-07 l.kg-1.h-1; at maximum swimming speed oxygen consumption was 3-4 times greater than at rest for a given individual. In comparison with other animals of the same body mass the cost of transport for the green turtle (0.186lO2.kg-1.km-1) is less than that for flying birds but greater than that for fish. From drag measurements it was calculated that the aerobic efficiency of swimming was between 1 and 10%; the higher efficiencies were found at the higher swimming speeds. Based upon the drag calculations for young turtles, it is estimated that adult turtles making the round-trip breeding migration between Brazil and Ascension Island (4800 km) would require the equivalent of about 21% of their body mass in fat stores to account for the energetic cost of swimming.  相似文献   

7.
To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale.  相似文献   

8.
Sea turtle movements often occur in open‐sea unsheltered areas, and are therefore likely to be influenced by major oceanographic processes. Only recently has work started to examine the possible relationships of these movements with dynamic oceanic features, and consequently a clear picture of such interaction is only available in a few cases. Newborn sea turtles are thought to rely on oceanic currents to reach their pelagic nursery habitats. The actual extent and timing of these developmental migrations are known for only a few populations, but these movements probably last several years and range over thousands of km. Large juveniles that have been tracked during their pelagic stage were found to make long‐distance movements, sometimes swimming against the prevailing currents. Older juveniles of most species leave the pelagic habitat to recruit to neritic developmental habitats. This is a very poorly documented phase of the sea turtle life‐cycle, and the few available indications show that turtles may have to swim actively for enormous distances to counterbalance their previous drift with the current. The course and extent of adult postnesting migrations vary greatly among different turtle species, but two main patterns are evident. Some species, like green, hawksbill and loggerhead turtles, shuttle between the nesting beach and a specific feeding area used for the entire inter‐reproductive period. In these cases, individuals swim, rather than drift, to complete their journeys, with possible advection due to currents sometimes helping them to quickly reach their target, but sometimes providing navigational challenges. Other species such as the olive ridley and the leatherback turtle, leave the coastal nesting areas to reach the pelagic environment where they forage, and perform wandering movements. Major oceanographic processes (such as main currents and eddies) have been recently shown to have a remarkable influence on leatherback movements, making it questionable whether these journeys are to be considered migrations or, rather, prolonged stays in vast feeding areas.  相似文献   

9.
Paternity was determined for three clutches and up to 20 offspring per clutch in the green turtle (Chelonia mydas) from Ascension Island, South Atlantic, using microsatellite markers. All three clutches were sired by at least two different males. The results were compared with those of previous studies of multiple paternity in turtles. No significant difference among studies was observed in the mean contribution of the males siring the largest proportion of progeny per clutch. The present study also provides evidence for segregation distortion (meiotic drive) in turtles.  相似文献   

10.
During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ∼3–4 months during the nesting period (November–February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53–304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season.  相似文献   

11.
Three species of sea turtles (the leatherback, Dermochelys coriacea; the green turtle, Chelonia mydas; and the olive ridley, Lepidochelys olivacea) nest abundantly in the Guianas, especially on the beaches adjacent to the mouth of the Marowijne River. Tagging demonstrated that green turtles nesting in Surinam are recruited from feeding grounds in or near the State of Ceará, Brazil, while olive ridleys, after nesting in Surinam, spread out over 3800 km of the coast of northern South America. A single tagged leatherback was recovered in Ghana.  相似文献   

12.
Fisheries are recognised as a major threat to sea turtles worldwide. Oceanic driftnets are considered the main cause of the steep decline in Pacific Ocean populations of the leatherback sea turtle Dermochelys coriacea. The world’s largest leatherback population nests in West Africa and migrates across the Atlantic Ocean to feed off the South American coast. There, the turtles encounter a range of fisheries, including the Brazilian driftnet fishery targeting hammerhead sharks. From 2002 to 2008, 351 sea turtles were incidentally caught in 41 fishing trips and 371 sets. Leatherbacks accounted for 77.3% of the take (n = 252 turtles, capture rate = 0.1405 turtles/km of net), followed by loggerheads Caretta caretta (47 individuals, capture rate = 0.0262 turtles/km of net), green turtles Chelonia mydas (27 individuals, capture rate = 0.0151 turtles/km of net) and unidentified hard-shelled turtles (25 individual, capture rate = 0.0139 turtles/km of net) that fell off the net during hauling. Immediate mortality (i.e., turtles that were dead upon reaching the vessel, excluding post-release mortality) was similar among the species and accounted for 22.2 to 29.4% of turtles hauled onboard. The annual catch by this fishery ranged from 1,212 to 6,160 leatherback turtles, as estimated based on bootstrap procedures under different fishing effort scenarios in the 1990s. The present inertia in law and enforcement regarding gillnet regulations in Brazil could result in the reestablishment of the driftnet fishery, driving rates of leatherback mortality to levels similar to those observed in previous decades. This development could potentially lead to the collapse of the South Atlantic leatherback population, mirroring the decline of the species in the Pacific. In light of these potential impacts and similar threats to other pelagic mega fauna, we recommend banning this type of fishery in the region.  相似文献   

13.
At Ascension Island and Cyprus, major nesting areas for green turtles ( Chelonia mydas ) in the Atlantic and Mediterranean, respectively, visual inspection shows some beaches are light in colour while others are darker. We objectively measured the albedo of the sand on different beaches, i.e. the percentage of the incident solar radiation that was reflected from the sand surface. At sites where albedo was recorded, we also measured the temperature of the sand at nest depths. At both rookeries, the sand temperature was markedly higher on darker beaches due to greater absorption of the incident solar radiation over the diurnal cycle. Temperature loggers buried at nest depths revealed seasonal changes in temperature on both islands, but showed that the lowest temperatures found on the darker beaches rarely dropped below the highest temperatures on the lighter beaches. Sea turtles exhibit temperature-dependent sex determination. Since sand albedo is a major avenue for the production of a range of incubation temperatures on both islands, it will also have profound implications for hatchling sex ratios. In comparison with both Ascension Island and Cyprus, for samples collected from sea turtle rookeries around the world there was an even greater range in sand albedo values. This suggests that sand albedo, a factor that has previously received little consideration, will have profound implications for nest temperatures, and hence hatchling sex ratios, for other populations and species.  相似文献   

14.

Background

Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls.

Methodology/Principal Findings

In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24–48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home.

Conclusions/Significance

While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.  相似文献   

15.
Aim  To examine the exploitation, recovery and current status of green turtles ( Chelonia mydas ) nesting at Ascension Island.
Location  Ascension Island (UK) (7°57' S, 14°22' W), South Atlantic Ocean.
Methods  We analysed records of the harvest of green turtles nesting at Ascension Island between 1822 and 1935, illustrating the decline in numbers over this period. Using a deterministic age-class structured model we predict the initial number of breeding females present in the population prior to the recorded harvest and compare this to our estimate of the current population based upon our recent annual surveys (1999–2004).
Results  Prior to 1822 we estimate the nesting population of green turtles to have been at least 19,000–22,000 individuals in order for the population to have survived the level of harvest recorded. From recent data (1999–2004), we estimate the current breeding population of green turtles at this site to be 11,000–15,000 females. Our results illustrate a dramatic recovery of the population, which is still increasing exponentially and shows no evidence of slowing, suggesting it has not reached 50% of its carrying capacity.
Main conclusions  We estimate that, since the 1970s, the Ascension Island population of green turtles has increased by 285% and question the recent listing of this species as endangered by the IUCN (World Conservation Union), in particular in the Atlantic Ocean, where 75% of the populations assessed by the IUCN are increasing. Indeed, we estimate the global population of this species to be in excess of 2.2 million individuals. We suggest that the IUCN's global listing process detracts attention from those populations that are truly threatened with extinction and should not, in its present form, be applied to globally distributed long-lived species such as marine turtles.  相似文献   

16.
Aim This study examines the relationship between the distribution of existing sea turtle nesting sites and historical patterns of tropical cyclone events to investigate whether cyclones influence the current distribution of sea turtle nesting sites. The results, together with information on predicted cyclone activity and other key environmental variables, will help in the identification and prediction of future nesting sites for sea turtles as changes to the coastal environment continue. Location Queensland, Australia. Methods We used data on the nesting distribution of seven populations of four species of sea turtles [green (Chelonia mydas), flatback (Natator depressus), hawksbill (Eretmochelys imbricata) and loggerhead (Caretta caretta)] from the eastern Queensland coast, and tropical cyclone track data from 1969 to 2007 to explore the relationship between (1) sea turtle nesting phenology and cyclone season, and (2) sea turtle nesting sites and cyclone distribution. Furthermore, using two green turtle populations as a case study, we investigated the relationship between cyclone disturbance and sea turtle reproductive output, nesting site and season. Bootstrapping was used to explore if current sea turtle nesting sites are located in areas with lower or higher cyclone frequency than areas where turtles are currently not nesting. Results All populations of sea turtles studied here were disturbed by cyclone activity during the study period. The exposure (frequency) of tropical cyclones that crossed each nesting site varied greatly among and within the various sea turtle populations. This was mainly a result of the spatial distribution of each population’s nesting sites. Bootstrapping indicated that nesting sites generally have experienced lower cyclone activity than other areas that are available for nesting. Main conclusions Tropical cyclones might have been sufficiently detrimental to sea turtle hatching success on the eastern Queensland coast that through a natural selection process turtles in this region are now nesting in areas with lower cyclone activity. Therefore, it is important that future studies that predict climate or range shifts for sea turtle nesting distributions consider future cyclone activity as one of the variables in their model.  相似文献   

17.
While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents.  相似文献   

18.
Depth and flipper movements were simultaneously measured during 23 dives for a free-swimming green turtle (Chelonia mydas) at Ascension Island. A few characteristic dive profiles that have been widely reported in hard-shelled turtles were recorded. Flipper movements revealed that, on dives to midwater, there was generally active swimming, compared to long periods of inactivity on dives to the seafloor. During all dives, there were clear changes in the flipper beat frequency during the descent. On leaving the surface, flippers beats occurred quickly (typically 30-40 beats min−1) and then as the descent continued the frequency declined (typically to about 10-14 beats min−1). These observations match the general pattern reported for other air-breathing divers for increased effort at the start of the descent to overcome initial positive buoyancy.  相似文献   

19.
Jaguars (Panthera onca) are opportunistic predators that prey on large profitable prey items, such as sea turtles at nesting beaches. Here, we use jaguar and sea turtle track-count surveys, combined with satellite telemetry of one jaguar, to evaluate whether jaguar hunting behavior and movements are influenced by seasonal sea turtle nesting in the Sector Santa Rosa of Área de Conservación Guanacaste in northwest Costa Rica. We used generalized linear models to evaluate the effect of moon phase and sea surface temperature on olive ridley (Lepidochelis olivacea) and green turtle (Chelonia mydas) nesting abundance, as well as the combination of these predictors on the frequency of jaguar predation activity (proximity to nesting beaches) and movements. For home-range size and location analyses, we calculated kernel density estimates for each season at three different temporal scales. Sea turtle nesting season influenced jaguar activity patterns, as well as sea turtle abundance was related to jaguar locations and predation events, but jaguar home-range size (88.8 km2 overall) did not differ between nesting seasons or among temporal scales. Environmental conditions influenced sea turtle nesting and, as a consequence, also influenced jaguar movements and foraging activity. Our study defined the home range of a female jaguar in the tropical dry forest and its relationship to seasonally abundant turtles. Additional information related to the effect of tourism on jaguar–sea turtle interactions would improve conservation of these species at unique nesting beaches in the area.  相似文献   

20.
In order to identify the migratory pathways and foraging grounds of post-nesting Green Turtles (Chelonia mydas) in the Red Sea, we attached satellite transmitters to four females immediately after egg deposition and tracked them between 207 and 647 days. We identified four geographically distinct post-nesting habitat areas and migration paths from Zabargad Island, Egypt which was remarkable given our small sample size. Our shortest migration was 140?km and the longest 940?km, with the migrations and post-nesting habitat encompassing the boundaries of four of the seven Red Sea countries (Egypt, Sudan, Eritrea, and Saudi Arabia). The post-nesting habitats were located in shallow coastal habitat and three consisted of near-shore archipelagos. Two turtles moved past areas of suitable post-nesting habitat that was occupied by other turtles, which suggests that these turtles may be exhibiting fidelity to certain feeding and nesting sites. Our results suggest that regional and multi-national cooperation will be needed to protect sea turtles that nest on Zabargad Island, a nesting site that is important for Egypt and other Red Sea nations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号