首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imprinting errors and developmental asymmetry   总被引:6,自引:0,他引:6  
There are, in the broadest sense, two mechanisms by which gene expression can be extinguished in vertebrates. The first of these is based on mass action effects of positive and negative regulatory factors and is termed activation and repression; the second is independent of positive regulatory factors but is based on the history of the affected gene and is termed silencing. It can be said, again in the broadest sense, that imprinted genes, genes subject to X inactivation, and transposon promoters are subject to silencing, while the promoters of tissue-specific genes in non-expressing tissues are controlled by activation and repression. The escape of imprinted genes from silencing through unknown mechanisms can cause developmental abnormalities and can predispose to the formation of embryonal tumours. One developmental disorder caused by loss of imprinting of genes on chromosome 11p15.5 is Beckwith-Wiedemann syndrome (BWS). This syndrome has long been known to be inexplicably common in monozygotic twins; the twins are nearly always discordant for BWS, and nearly all twins are female. A loss of imprinting model based on stochastic errors in the nucleocytoplasmic trafficking of the DNA methyltransferase DNMT1, or a paternally expressed function that opposes maintenance methylation of maternally repressed growth-enhancing genes, is proposed to explain the perplexing genetics of BWS in monozygotic twins.  相似文献   

2.
The generation of distinct cell fates can require movement of specific molecules or organelles to particular locations within the cell. These subcellular movements are often the jobs of motor proteins. Seemingly disparate developmental processes--determination of right and left in vertebrates, setting up the axes of polarity in insect embryos, mating-type switching in yeast, and coordinated organelle movements in Drosophila--converge in their dependence on motor proteins. The extent of possible regulatory complexity is only beginning to emerge.  相似文献   

3.
Organisms are built from distinct modules, which are internally coherent but flexible in their relationships among one another. We examined morphological variation within and between two candidate modules: the fore- and hindwings of bumblebees (Hymenoptera: Apidae: Bombus empatiens). We used the techniques of geometric morphometrics (Procrustes superimposition) to analyze the variation of landmark configurations in fore- and hindwings. Regression was used to correct for size-related shape variation (allometry). Principal component analysis revealed patterns of variation that were remarkably similar for individual variation and fluctuating asymmetry (FA). Because covariation of FA among parts must be due to direct transmission of the developmental perturbations causing FA, this agreement of patterns suggests that much of individual variation is also due to direct developmental interactions within each developing wing. Moreover, partial least squares analysis indicated that the patterns of shape covariation between fore- and hindwings were nearly the same as the patterns of within-wing variation. Shape covariation of FA was only found in bees that had been reared under elevated CO(2) concentration but not in bees from the control treatment, suggesting that the mechanisms of developmental interactions between fore- and hindwings are related to gas exchange. We conclude that the fore- and hindwings are developmental modules that maintain internal coherence through direct developmental interactions and are connected to each other only by relatively few links that use the system of interactions within modules.  相似文献   

4.
The glucosinolate content of various organs of the model plant Arabidopsis thaliana (L.) Heynh., Columbia (Col-0) ecotype, was analyzed at different stages during its life cycle. Significant differences were noted among organs in both glucosinolate concentration and composition. Dormant and germinating seeds had the highest concentration (2.5-3.3% by dry weight), followed by inflorescences, siliques (fruits), leaves and roots. While aliphatic glucosinolates predominated in most organs, indole glucosinolates made up nearly half of the total composition in roots and late-stage rosette leaves. Seeds had a very distinctive glucosinolate composition. They possessed much higher concentrations of several types of aliphatic glucosinolates than other organs, including methylthioalkyl and, hydroxyalkyl glucosinolates and compounds with benzoate esters than other organs. From a developmental perspective, older leaves had lower glucosinolate concentrations than younger leaves, but this was not due to decreasing concentrations in individual leaves with age (glucosinolate concentration was stable during leaf expansion). Rather, leaves initiated earlier in development simply had much lower rates of glucosinolate accumulation per dry weight gain throughout their lifetimes. During seed germination and leaf senescence, there were significant declines in glucosinolate concentration. The physiological and ecological significance of these findings is briefly discussed.  相似文献   

5.
In the present study, the effect of thermal stress on the variability and fluctuating asymmetry (FA) in different morphological traits, viz., thorax length (TL), sternopleural bristle number (SBN), wing length (WL), wing-to-thorax (W/T) ratio, sex comb tooth number (SCTN) and ovariole number (ON), was investigated in 10 isofemale lines of Drosophila ananassae. The phenotypic and genetic variability is higher in the flies reared at low (20 °C) and at high (30 °C) temperatures as compared to that of standard (25 °C) temperature. Further, the levels of FA of measured traits differed significantly among the three temperature regimes except SBN and SCTN in males and SBN and W/T ratio in females. Moreover, the magnitude of positional fluctuating asymmetry is similar in males reared at three different developmental temperatures for SBN and SCTN but it varies significantly for SBN in females. However, when FA across all the traits was combined into a composite index (CFA), significant differences were found for both temperature regimes and sexes. Males showed higher CFA at 30 °C whereas in females it was higher at 20 °C. The results suggest that temperature increases the levels of variability and FA but the effect seems to be trait and sex specific in D. ananassae.  相似文献   

6.
7.
Fluctuating asymmetry (FA) is small deviations from perfect symmetry which reflect one component of fitness, i.e. developmental stability. There is accumulating evidence that low FA is important in inter- and intra-sexual selection in humans. However, there is little information on the pattern of FA in children. Data from cross-sectional studies of 680 participants from 2–18 years suggests that (1) both absolute and relative FA reduces with age until 10 years (2) there is an increase in FA in adolescents (11–15 years) with a peak at 13 years for males and 14 years for females (3) after 15 years there is reduction in FA which is maintained until 18 years. The importance of growth rate, metabolic maintenance and sex steroids on developmental stability is discussed.  相似文献   

8.
Directional asymmetry and the measurement of developmental instability   总被引:5,自引:0,他引:5  
Three widely used methods of estimating fluctuating asymmetry may yield serious overestimates if directional asymmetry is present. When two sides of a bilateral trait grow at different rates, then the asymmetry variance (Var[l-r]) increases with size, even when developmental noise is nil. But the residual variance around a population's mean developmental trajectory is invariant with respect to size. Thus, it can be used as a measure of developmental instability. We introduce a measure of developmental instability, the residual variance (s2δ), obtainable from either a major axis regression, which is equivalent to a principal component analysis on l and r, or a general structural model. This residual variance can be estimated from directionally asymmetric or even antisymmetric traits. We present examples of developmental instability estimated from directionally asymmetric mandibles (house mouse) and leaves (soybean), and antisymmetric claws (fiddler crab).  相似文献   

9.
10.
The reproductive organs in non-obese diabetic (NOD) mice were histopathologically studied, in order to elucidate the relationships between developmental abnormalities, such as diminished rates of implantation and viable embryos, and structural changes in the reproductive organs. NOD mice with (NOD-DM) and without (NOD-N) diabetes mellitus and ICR mice were compared. The severity of histopathological changes in the pancreas and in the liver were used as parameters which indicated the severity of diabetes itself and of the secondary metabolic disorder. NOD-DM mice exhibited uterine weight loss, accumulation of lipids in luminal and glandular epithelium, atrophies of the endometrium and myometrium and a decrease in the number of muscle cell layers. They also showed a high concentration of lipid droplets in ovarian granulosa cells, atretic follicles and atrophy and lack of lipids in ovarian stroma cells. The severity of these structural changes in the reproductive organs corresponded to those of the changes in the pancreas and the liver. The structural alterations in the ovary suggested disorder in oocyte maturation. The structural changes in the uterus appeared to be related to the decrease in the ratios of implantation and of viable embryos at post-implantation stage. The present studies suggest that the impaired structural environment together with the metabolic environment caused the abnormal development seen, for example, in the oocyte maturation, and at the implantation and post-implantation stage of diabetic mice. It also caused alterations in their hormonal environment.  相似文献   

11.
12.
Mice selected for large and small brain weight preferred to move rightwards in two cognitive paradigms, food-motivated T-maze performance and extrapolation ability tests. The degree of asymmetry in choices of movement direction varied in selection generations and sometimes was accompanied by asymmetry in the weight of the left and right hippocampi and other forebrain structures and different numbers of right and left neocortical cells.  相似文献   

13.
14.
Despite robust cross-cultural reliability of human facial attractiveness ratings, research on facial attractiveness has only superficially addressed the connection between facial attractiveness and the history of sexual selection in Homo sapiens. There are reasons to believe that developmental stability and phenotypic quality are related. Recent studies of nonhuman animals indicate that developmental stability, measured as fluctuating asymmetry in generally bilateral symmetrical traits, is predictive of performance in sexual selection: Relatively symmetrical males are advantaged under sexual selection. This pattern is suggested by our study of facial attractiveness and fluctuating asymmetry in seven bilateral body traits in a student population. Overall, facial attractiveness negatively correlated with fluctuating asymmetry; the relation for men, but not for women, was statistically reliable. Possible confounding factors were controlled for in the analysis.  相似文献   

15.
16.
The temperate‐zone butterfly Pararge aegeria can use three developmental pathways corresponding to different seasonal cohorts: (1) development with a pupal winter diapause resulting in early spring adults; (2) development with a larval winter diapause resulting in late‐spring adults and (3) direct development resulting in summer or second generation adults. In order to test adaptive predictions, we compared variation in flight‐ and thermoregulation‐related morphology among adult males and females from the three pathways using both field data (i.e. wild‐caught butterflies) and experimental breeding data (i.e. reared under different photoperiod regimes). Morphological patterns among the pathways were largely similar in the field and rearing data. Seasonal patterns differed between the sexes for most traits, including (relative) size measures and wing colour. Our results suggest sex‐related, adaptive seasonal plasticity for morphological traits related to flight behaviour in a multivoltine insect.  相似文献   

17.
18.
The relationship between developmental stability and morphological asymmetry is derived under the standard view that structures on each side of an individual develop independently and are normally distributed. I use developmental variance of sizes of parts, VD, as the converse of developmental stability, and assume that VD follows a gamma distribution. Repeatability of asymmetry, a measure of how informative asymmetry is about VD, is quite insensitive to the variance in VD, for example only reaching 20% when the coefficient of variation of VD is 100%. The coefficient of variation of asymmetry, CVFA, also increases very slowly with increasing population variation in VD. CVFA values from empirical data are sometimes over 100%, implying that developmental stability is sometimes more variable than any previously studied type of trait. This result suggests that alternatives to this model may be needed.  相似文献   

19.
20.
Behavioral laterality is widely found among vertebrates, but has been little studied in aquatic invertebrates. We examined behavioral laterality in attacks on prey shrimp by the cuttlefish, Sepia lycidas, and correlated this to their morphological asymmetry. Behavioral tests in the laboratory revealed significant individual bias for turning either clockwise or counterclockwise toward prey, suggesting behavioral dimorphism in foraging behavior. Morphological bias was examined by measuring the curvature of the cuttlebone; in some the cuttlebone was convex to the right (righty), while in others, the cuttlebone was convex to the left (lefty). The frequency distributions of an index of cuttlebone asymmetry were bimodal, indicating that populations were composed of two types of individuals: "righty" and "lefty." Moreover, an individual's laterality in foraging behavior corresponded with the asymmetry of its cuttlebone, with righty individuals tending to turn counterclockwise and lefty ones in the opposite direction. These results indicate that cuttlefish exhibit behavioral dimorphism and morphological antisymmetry in natural populations. The presence of two types of lateral morph in cuttlefish provides new information on the relationship between antisymmetric morphologies and the evolution of individual laterality in behavioral responses in cephalopods. The implications of these findings for the interpretation of ecological meaning and maintenance mechanisms of laterality in cuttlefish are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号