首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.  相似文献   

2.
KW Chan  PC Liu  WC Yang  J Kuo  CL Chang  CY Wang 《Theriogenology》2012,78(6):1329-1338
Because it is difficult to differentiate male and female Columbidae birds (e.g., Columba livia) on the basis of morphology, detection of DNA fragments associated with Chromobox-Helicase-DNA binding genes or female-specific genes have been widely used. The objective was to establish a loop-mediated isothermal amplification system involving the 18S ribosomal RNA gene and a female-specific gene for sex identification of Columba livia birds. Unlike polymerase chain reaction (PCR), random amplification polymorphic DNA-PCR and amplified fragment length polymorphism-PCR, target DNA was amplified under isothermal conditions (the entire process was completed in <60 min). By modulating various parameters involved in amplification, e.g., concentrations of MgSO4, betaine, Bst polymerase, and deoxynucleotide triphosphates, as well as the relative ratio of outer/inner primers and temperatures, optimal conditions for both targets were established that had equal detection limits (62.5 ng). To simplify sex determination, direct observations of the presence of white precipitate (derived from magnesium pyrophosphates) were used for positive samples, which was compared with the whitish ring which formed in a negative sample after addition of CuSO4. This approach was a rapid alternative to electrophoresis or turbidimetry. DNA extracted from the blood and feathers of various birds were tested using loop-mediated isothermal amplification; results were consistent with a standard PCR. Thus, the assay was a simple, accurate, fast, and economical alternative suitable for veterinary practice.  相似文献   

3.
Recent studies have indicated that pulmonary intravascular macrophages (PIMs) are a resident cell population which in structure and function resemble mature macrophages of the mononuclear phagocyte system (MPS) in various domestic species, particularly the ruminants. The ultrastructural features of PIMs of the goat and calf lungs were studied by using vascular perfusion and direct airway instillation of fixatives. Staining with tannic acid as a component of paraformaldehyde-glutaraldehyde-based fixative revealed the presence of an electron-dense coat on the surface of the cell membrane of the PIMs. The surface coat disappeared after heparin infusion and after enzymatic digestion with lipolytic lipase, suggesting that the surface coat was predominantly lipoprotein in nature. The lipoprotein coat was organized in the form of a linear chain of spherical globules with a consistent periodicity created by the intervening translucent space between individual globules. The surface coat was separated from the outer-leaflet of the cell membrane by an empty space measuring 35-39 nm in width. PIMs possessed a significant number of coated pits and coated vesicles, the cell organelles of receptor-mediated endocytosis of lipoproteins. In concurrence with the coated pits and vesicles, microtubules, multivesicular bodies, and lipoprotein-positive vesicles were also observed. It is conceivable that PIMs are involved in lipid metabolism and are the major source of vasoactive substances, which significantly influence both the dynamics of pulmonary circulation and the surfactant turnover of the ruminant lung.  相似文献   

4.
Pulmonary intravascular macrophages (PIMs) are present in species such as cattle, sheep and horse and promote acute lung inflammation (ALI). Rabbits are often used as a model of ALI but there is controversy about the presence of PIMs in these species. Rabbits were treated with 10 mg/kg of gadolinium chloride intravenously (GC; n?=?6) or saline (n?=?6) followed by euthanasia at 48 h post-treatment to determine the presence of PIMs. In a subsequent study, rabbits were pre-treated with GC or 0.9 % saline followed by 100 μg/kg of E. coli lipopolysaccharide intravenously 48 h later. Rabbits were euthanized 24 h post-LPS treatment. Light and electron microscopy showed that PIMs attached to the capillary endothelium and were positive for RAM-11 anti-macrophage antibody. While GC treatment induced apoptotic PIMs, there was no difference in the PIM number between control and GC-treated rabbits. Rabbits administered with LPS were 3.5 times more likely to die before the end of the 24-h period than those pre-treated with GC. Lung heterophil accumulation and IL-1β, TNFα and IL-6 mRNA expression were significantly higher in rabbits administered with LPS compared to those administered with GC before the LPS injection. PIMs from the LPS-treated rabbits were positive for TNFα. Lung, BAL and serum IL-8 and MCP-1 expression was not different between LPS rabbits with or without pre-treatment with GC. We conclude that rabbit lungs contain PIMs and that their depletion reduces endotoxin-induced lung inflammation. The presence of PIMs in rabbit lungs may need to be considered while using rabbit to model acute lung injury.  相似文献   

5.
Fumonisin B1 (FB1), a recently identified mycotoxin produced by Fusarium moniliforme in corn, has been shown to cause death in swine due to pulmonary edema, an apparently species specific effect, and to interfere with sphingolipid metabolism in vitro. Here we characterize the toxicity of fumonisins, using female cross-bred swine weighing 6 to 13 kg, and present a hypothesis regarding the mechanism of fumonisin-induced pulmonary edema in swine. FB1 was given daily intravenously (IV) to pig 1 for 9 days for a total of 72 mg (7.9 mg/kg) and to pig 2 for 4 days for a total of 67 mg (4.6 mg/kg). Pig 3 (control) was given saline IV for 9 days. Corn screenings naturally contaminated with FB1 (166 ppm) and FB2 (48 ppm) were fed to pigs 4, 5, and 6, and ground corn was fed to pigs 7 and 8 (controls). Pigs 4 and 7 were killed on day 5; pig 5 was found dead on day 6; and pigs 6 and 8 were killed on day 15. Pigs 4 and 5 had ingested 187 and 176 mg total fumonisins, respectively, while pig 6 had ingested 645 mg. Feed consumption had decreased in pigs fed corn screenings, with an additional sharp decrease prior to onset of clinical signs. Increases in serum liver enzymes, total bilirubin, and cholesterol were present, but electrocardiograms, heart rate, and body temperature were unaffected. Pigs dosed IV with FB1, developed mild intermittent respiratory abnormalities, while those fed screenings developed respiratory distress within 5 days. Mild interstitial pulmonary edema was observed in pig 1. Severe interstitial pulmonary edema, pleural effusion, and increased lung wet/dry weight ratio were observed in pigs 4 and 5. All pigs given fumonisin (either IV or orally) had hepatic changes characterized by hepatocyte disorganization and necrosis; pancreatic acinar cell degeneration was also observed. Ultrastructural changes in orally dosed swine included loss of sinusoidal hepatocyte microvilli; membranous material in hepatic sinusoids; and multilamellar bodies in hepatocytes, Kupffer cells, pancreatic acinar cells and pulmonary macrophages. Pulmonary intravascular macrophages (PIMs) contained large amounts of membranous material. Thus, the target organs of fumonisin in the pig are the lung, liver, and pancreas. At lower doses, slowly progressive hepatic disease is the most prominent feature, while at higher doses, acute pulmonary edema is superimposed on hepatic injury and may cause death. We hypothesize that altered sphingolipid metabolism causes hepatocellular damage resulting in release of membranous material into the circulation. This material is phagocytosed by the PIMs thus triggering the release of mediators which ultimately results in pulmonary edema.Presented in part at the 1991 Annual Meeting of the Society of Toxicology. The Toxicologist 11: 143 (A499).  相似文献   

6.

Background

Bile-duct ligated (BDL) rats recruit pulmonary intravascular macrophages (PIMs) and are highly susceptible to endotoxin-induced mortality. The mechanisms of this enhanced susceptibility and mortality in BDL rats, which are used as a model of hepato-pulmonary syndrome, remain unknown. We tested a hypothesis that recruited PIMs promote endotoxin-induced mortality in a rat model.

Methods

Rats were subjected to BDL to induce PIM recruitment followed by treatment with gadolinium chloride (GC) to deplete PIMs. Normal and BDL rats were treated intravenously with E. coli lipopolysaccharide (LPS) with or without GC pre-treatment followed by collection and analyses of lungs for histopathology, electron microscopy and cytokine quantification.

Results

BDL rats recruited PIMs without any change in the expression of IL-1β, TNF-α and IL-10. GC caused reduction in PIMs at 48 hours post-treatment (P < 0.05). BDL rats treated intravenously with E. coli LPS died within 3 hours of the challenge while the normal LPS-treated rats were euthanized at 6 hours after the LPS treatment. GC treatment of rats 6 hours or 48 hours before LPS challenge resulted in 80% (1/5) and 100% (0/5) survival, respectively, at 6 hours post-LPS treatment. Lungs from BDL+LPS rats showed large areas of perivascular hemorrhages compared to those pre-treated with GC. Concentrations of IL-1β, TNF-α and IL-10 were increased in lungs of BDL+LPS rats compared to BDL rats treated with GC 48 hours but not 6 hours before LPS (P < 0.05).

Conclusion

We conclude that PIMs increase susceptibility for LPS-induced lung injury and mortality in this model, which is blocked by a reduction in their numbers or their inactivation.  相似文献   

7.
The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ13C and δ15N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.  相似文献   

8.
Previous experiments on visual feature discrimination abilities have consistently shown a right-eye system lateralization in pigeons, Columba livia, and young domestic chickens, Gallus gallus domesticus, both nonpasserine species. Recently, however, it has been shown that photoreceptor distribution in the left and right retinas are asymmetrical in the European starling, Sturnus vulgaris, a passerine species. Single cone receptors are significantly more abundant in the left retina, which suggests that starlings should perform visual discrimination tasks more proficiently with the left eye, in contrast to previous findings with nonpasserines. We tested this hypothesis using the technique of monocular occlusion. In the first experiment, starlings were tested on a simultaneous visual discrimination task in three conditions: binocular (both eyes), left monocular (left eye only) and right monocular (right eye only). Subjects in the binocular and left-monocular conditions achieved significantly higher performance scores on the discrimination task than birds in the right-monocular condition. A second experiment found similar results, with birds in the left-monocular condition learning the discrimination task more than twice as quickly as those in the right-monocular condition. Subsequent tests with the alternative eye for both groups indicated no interocular transfer. These findings suggest that visual discriminative abilities in starlings are asymmetrical, and that they are lateralized in the opposite eye system than has been reported for all other species tested to date.  相似文献   

9.
Pulmonary intravascular macrophages (PIMs) have been recognized as the site of substantial uptake of blood-borne particles in the lungs of a number of domestic animal species. Concomitantly, there is a pronounced lung susceptibility to endotoxin in calves, goats, sheep, pigs, and cats. Hemodynamic changes and initial lung injury after endotoxin administration are mediated by arachidonic acid metabolites from a pulmonary source. A significant role of PIMs in regulating pulmonary hemodynamics is implicated.  相似文献   

10.
In dogs, laboratory animals, and man, the clearance of bacteria and particulates from blood occurs predominantly in hepatic Kupffer cells and splenic macrophages. In contrast, removal of blood-borne particulates in calves, sheep, goats, cats, and pigs occurs predominantly in pulmonary intravascular macrophages (PIMs). Review of recent studies indicates that PIMs are a resident cell population, junctionally adherent to the capillary endothelium of lungs and morphologically similar to hepatic Kupffer cells. PIMs are a pulmonary constituent of the mononuclear phagocyte system with respect to secretory, endocytic, and functional properties. Differentiated PIMs are rare in newborn pigs, and the majority of cells closely apposed to capillary endothelium consists of monocytes, which are occasionally in mitosis. In 7-day-old and older pigs, most cells apposed to capillary endothelium have characteristics of differentiated PIMs. This suggests a monocytic origin of PIMs in pigs. Perinatal colonization of lung capillaries by monocytes and their subsequent differentiation into PIMs represent a component of postnatal lung development. Estimates of relative PIM numbers in ovine and porcine lung parenchyma suggest cell densities similar to that of rat hepatic Kupffer cells. Apart from phagocytic properties, PIMs participate in the removal and disintegration of aged and impaired blood cells. After phagocytic stimulation, isolated PIMs secrete oxygen radicals, which are essential for microbicidal function. Similarly, by secreting bioactive lipids, stimulated PIMs may contribute to regulation of pulmonary hemodynamics. After receiving minute amounts of bacterial endotoxin, pulmonary injury is pronounced in sheep, calves, pigs, and cats, but not in laboratory animals and dogs. This presumably is related to the secretion of bioactive lipids by PIMs.  相似文献   

11.
The morphology and vasculature of the respiratory organs of the terrestrial coenobitids were studied using light microscopy, TEM, SEM and corrosion casting. The gills of Coenobita and Birgus are modified for air-breathing but are reduced in number and size and have a comparatively small surface area. The branchiostegal lungs of Coenobita (which live in gastropod shells) are very small but are well vascularized and have a thin blood/gas barrier. Coenobita has developed a third respiratory organ, the abdominal lung, that is formed from highly vascularized patches of very thin and intensely-folded dorsal integument. Oxygenated blood from this respiratory surface is returned to the pericardial sinus via the gills (in parallel to the branchiostegal circulation). Birgus, which does not inhabit a gastropod shell, has developed a highly complex branchiostegal lung that is expanded laterally and evaginated to increase surface area. The blood/gas diffusion distance is short and oxygenated blood is returned directly to the pericardium via pulmonary veins. We conclude that the presence of a protective mollusc shell in the terrestrial hermit crabs has favoured the evolution of an abdominal lung and in its absence a branchiostegal lung has been developed.  相似文献   

12.
Galα1–4Gal is typically found in mammalian glycolipids in small quantities, and recognized by some pathogens, such as uropathogenic Escherichia coli. In contrast, glycoproteins containing Galα1–4Gal were rarely found in vertebrates except in a few species of birds and amphibians until recently. However, we had previously reported that pigeon (Columba livia) egg white and serum glycoproteins are rich in N-glycans with Galα1–4Gal at non-reducing termini. Our investigation with egg white glycoproteins from 181 avian species also revealed that the distribution of (Galα1–4Gal)-containing glycoproteins was not rare among avians, and is correlated with the phylogeny of birds. The differentiated expression was most likely emerged at earlier stage of diversification of modern birds, but some birds might have lost the facility for the expression relatively recently.  相似文献   

13.
The taxonomy of the order Phthiraptera is unstable and still problematic to researchers. Most of the current taxon classifications are mainly based on morphological features. Campanulotes bidentatus belongs to the chewing lice of the Philopteridae family that mostly parasitic on birds. There is a lack of sequence data and phylogenetic analyses on the family Philopteridae. In the current study, C. bidentatus was collected from the domestic pigeon Columba livia and identified morphologically and molecularly based on the mitochondrial cytochrome c oxidase subunit 1 gene (COI). The infection rate of the Campanulotes genus was approximately 58.82% in this study. Phylogenetic analysis based on the mt COI gene was informative for members of Philopteridae and the group taxon genera formed distinct clades. Future studies were recommended using the 16s rRNA to enhance the tree topology and obtain clear differentiation between genera.  相似文献   

14.

Background and Aims

It has traditionally been considered that the flowers of Scrophularia are mainly pollinated by wasps. We studied the pollination system of four species which stand out for their large and showy flowers: S. sambucifolia and S. grandiflora (endemics of the western Mediterranean region), S. trifoliata (an endemic of the Tyrrhenian islands) and S. calliantha (an endemic of the Canary Islands). Our principal aim was to test whether these species were pollinated by birds or showed a mixed pollination system between insects and birds.

Methods

Censuses and captures of insects and birds were performed to obtain pollen load transported and deposited on the stigmas. Also, a qualitative and quantitative analysis of the flowers and inflorescences was carried out.

Key Results

Flowers were visited by Hymenoptera and by passerine birds. The Canarian species was the most visited by birds, especially by Phylloscopus canariensis, and its flowers were also accessed by juveniles of the lizard Gallotia stehlini. The most important birds in the other three species were Sylvia melanocephala and S. atricapilla. The most important insect-functional groups in the mixed pollination system were: honey-bees and wasps in S. sambucifolia; bumble-bees and wasps in S. grandiflora; wasps in S. trifoliata; and a small bee in S. calliantha.

Conclusions

The species studied show a mixed pollination system between insects and passerine birds. In S. calliantha there is, in addition, a third agent (juveniles of Gallotia stehlini). The participation of birds in this mixed pollination system presents varying degrees of importance because, while in S. calliantha they are the main pollinators, in the other species they interact to complement the insects which are the main pollinators. A review of different florae showed that the large showy floral morphotypes of Scrophularia are concentrated in the western and central Mediterranean region, Macaronesia and USA (New Mexico).  相似文献   

15.
Variation in the melanocortin-1 receptor (Mc1r) is associated with pigmentation diversity in wild and domesticated populations of vertebrates, including several species of birds. Among domestic bird species, pigmentation variation in the rock pigeon ( Columba livia ) is particularly diverse. To determine the potential contribution of Mc1r variants to pigment diversity in pigeons, we sequenced Mc1r in a wide range of pigeon breeds and identified several single nucleotide polymorphisms, including a variant that codes for an amino acid substitution (Val85Met). In contrast to the association between Val85Met and eumelanism in other avian species, this change was associated with pheomelanism in pigeons. In vitro cAMP accumulation and protein expression assays revealed that Val85Met leads to decreased receptor function and reduced cell surface expression of the mutant protein. The reduced in vitro function is consistent with the observed association with reduced eumelanic pigmentation. Comparative genetic and cellular studies provide important insights about the range of mechanisms underlying diversity among vertebrates, including different phenotypic associations with similar mutations in different species.  相似文献   

16.
Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.  相似文献   

17.
Among the extant air‐breathing vertebrates, the avian respiratory system is structurally the most complex and functionally the most efficient gas exchanger. Having been investigated for over four centuries, some aspects of its biology have been extremely challenging and highly contentious and others still remain unresolved. Here, while assessing the most recent findings, four notable aspects of the structure and function of the avian respiratory system are examined critically to highlight the questions, speculations, controversies and debates that have arisen from past research. The innovative techniques and experiments that were performed to answer particular research questions are emphasised. The features that are outlined here concern the arrangement of the airways, the path followed by the inspired air, structural features of the lung and the air and blood capillaries, and the level of cellular defence in the avian respiratory system. Hitherto, based on association with the proven efficiency of naturally evolved and human‐made counter‐current exchange systems rather than on definite experimental evidence, a counter‐current gas exchange system was suggested to exist in the avian respiratory system and was used to explain its exceptional efficiency. However, by means of an elegant experiment in which the direction of the air‐flow in the lung was reversed, a cross‐current system was shown to be in operation instead. Studies of the arrangement of the airways and the blood vessels corroborated the existence of a cross‐current system in the avian lung. While the avian respiratory system is ventilated tidally, like most other invaginated gas exchangers, the lung, specifically the paleopulmonic parabronchi, is ventilated unidirectionally and continuously in a caudocranial (back‐to‐front) direction by synchronized actions of the air sacs. The path followed by the inspired air in the lung–air sac system is now known to be controlled by a mechanism of aerodynamic valving and not by anatomical valves or sphincters, as was previously supposed. The structural strength of the air and blood capillaries is derived from: the interdependence between the air and blood capillaries; a tethering effect between the closely entwined respiratory units; the presence of epithelial–epithelial cell connections (retinacula or cross‐bridges) that join the blood capillaries while separating the air capillaries; the abundance and intricate arrangement of the connective tissue elements, i.e. collagen, elastin, and smooth muscle fibres; the presence of type‐IV collagen, especially in the basement membranes of the blood–gas barrier and the epithelial–epithelial cell connections; and a putative tensegrity state in the lung. Notwithstanding the paucity of free surface pulmonary macrophages, the respiratory surface of the avian lung is well protected from pathogens and particulates by an assortment of highly efficient phagocytic cells. In commercial poultry production, instead of weak pulmonary cellular defence, stressful husbandry practices such as overcrowding, force‐feeding, and intense genetic manipulation for rapid weight gain and egg production may account for the reported susceptibility of birds to aerosol‐transmitted diseases.  相似文献   

18.
Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b) exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a) is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins), we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula), migratory Northern Wheatears (Oenanthe oenanthe) and pigeons (Columba livia). In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism.  相似文献   

19.
Summary The roles of the pineal organ and the eye in the control of circadian locomotor rhythmicity were studied in the pigeon (Columba livia). Neither pinealectomy nor blinding abolished the circadian rhythms in constant dim light conditions (LLdim). All the pinealectomized birds and the blinded birds entrained to light-dark (LD) cycles with no discernible anticipatory activity. However, the birds which had been both pinealectomized and blinded showed no circadian rhythms in prolonged LLdim. These birds entrained to LD cycles with anticipatory activity and showed residual rhythmicity for a while after transfer from LD cycles to LLdim. Continuous administration of melatonin induced suppression of the circadian rhythms and reduced total amount of locomotor activity in LLdim. These results suggest that not only the pineal organ but also the eye (perhaps the retina) is involved in the pigeon's circadian system.Abbreviations NAT N-acetyltransferase - LLdim constant dim light - cadian period - SCN suprachiasmatic nucleus - circadian activity time - LD light-dark  相似文献   

20.
Aerosolized or aspirated manufactured carbon nanotubes have been shown to be cytotoxic, cause pulmonary lesions, and demonstrate immunomodulatory properties. CD-1 mice were used to assess pulmonary toxicity of helical carbon nanotubes (HCNTs) and alterations of the immune response to subsequent infection by Pseudomonas aeruginosa in mice. HCNTs provoked a mild inflammatory response following either a single exposure or 2X/week for three weeks (multiple exposures) but were not significantly toxic. Administering HCNTs 2X/week for three weeks resulted in pulmonary lesions including granulomas and goblet cell hyperplasia. Mice exposed to HCNTs and subsequently infected by P. aeruginosa demonstrated an enhanced inflammatory response to P. aeruginosa and phagocytosis by alveolar macrophages was inhibited. However, clearance of P. aeruginosa was not affected. HCNT exposed mice depleted of neutrophils were more effective in clearing P. aeruginosa compared to neutrophil-depleted control mice, accompanied by an influx of macrophages. Depletion of systemic macrophages resulted in slightly inhibited bacterial clearance by HCNT treated mice. Our data indicate that pulmonary exposure to HCNTs results in lesions similar to those caused by other nanotubes and pre-exposure to HCNTs inhibit alveolar macrophage phagocytosis of P. aeruginosa. However, clearance was not affected as exposure to HCNTs primed the immune system for an enhanced inflammatory response to pulmonary infection consisting of an influx of neutrophils and macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号