首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that a measure of the gradients of vertical disparity over a surface may scale the mapping between horizontal disparity and perceived depth. We have investigated this possibility by obtaining estimates of the depth within stereograms that simulated two apposed fronto-parallel planes placed at different distances from an observer. The gradients of vertical disparity in a stereogram were set to simulate those appropriate to a viewing distance of 12.5 cm, 25 cm, 50 cm or 100 cm, whereas the distance specified by vergence and accommodative cues was always fixed at 50 cm. Judgements of the perceived depth between the two planes were uninfluenced by changes in the gradients of vertical disparity. It thus seems that the human visual system does not employ vertical disparity as a scaling parameter in stereoscopic depth judgements.  相似文献   

2.
During natural activities, two types of eye movements - saccades and vergence - are used in concert to point the fovea of each eye at features of interest. Some electrophysiological studies support the concept of independent neurobiological substrates for saccades and vergence, namely saccadic and vergence burst neurons. Discerning the interaction of these two components is complicated by the near-synchronous occurrence of saccadic and vergence components. However, by positioning the far target below the near target, it is possible to induce responses in which the peak velocity of the vertical saccadic component precedes the peak velocity of the horizontal vergence component by approximately 75 ms. When saccade-vergence responses are temporally dissociated in this way, the vergence velocity waveform changes, becoming less skewed. We excluded the possibility that such change in skewing was due to visual feedback by showing that similar behavior occurred in darkness. We then tested a saccade-related vergence burst neuron (SVBN) model proposed by Zee et al. in J Neurophysiol 68:1624-1641 (1992), in which omnipause neurons remove inhibition from both saccadic and vergence burst neurons. The technique of parameter estimation was used to calculate optimal values for responses from human subjects in which saccadic and convergence components of response were either nearly synchronized or temporally dissociated. Although the SVBN model could account for convergence waveforms when saccadic and vergence components were nearly synchronized, it could not when the components were temporally dissociated. We modified the model so that the saccadic pulse changed the parameter values of the convergence burst units if both components were synchronized. The modified model accounted for velocity waveforms of both synchronous and dissociated convergence movements. We conclude that both the saccadic pulse and omnipause neuron inhibition influence the generation of vergence movements when they are made synchronously with saccades.  相似文献   

3.
4.
Our understanding of how the visual system processes motion transparency, the phenomenon by which multiple directions of motion are perceived to coexist in the same spatial region, has grown considerably in the past decade. There is compelling evidence that the process is driven by global-motion mechanisms. Consequently, although transparently moving surfaces are readily segmented over an extended space, the visual system cannot separate two motion signals that coexist in the same local region. A related issue is whether the visual system can detect transparently moving surfaces simultaneously or whether the component signals encounter a serial 'bottleneck' during their processing. Our initial results show that, at sufficiently short stimulus durations, observers cannot accurately detect two superimposed directions; yet they have no difficulty in detecting one pattern direction in noise, supporting the serial-bottleneck scenario. However, in a second experiment, the difference in performance between the two tasks disappears when the component patterns are segregated. This discrepancy between the processing of transparent and non-overlapping patterns may be a consequence of suppressed activity of global-motion mechanisms when the transparent surfaces are presented in the same depth plane. To test this explanation, we repeated our initial experiment while separating the motion components in depth. The marked improvement in performance leads us to conclude that transparent motion signals are represented simultaneously.  相似文献   

5.
Jainta S  Kapoula Z 《PloS one》2011,6(4):e18694
Reading requires three-dimensional motor control: saccades bring the eyes from left to right, fixating word after word; and oblique saccades bring the eyes to the next line of the text. The angle of vergence of the two optic axes should be adjusted to the depth of the book or screen and--most importantly--should be maintained in a sustained manner during saccades and fixations. Maintenance of vergence is important as it is a prerequisite for a single clear image of each word to be projected onto the fovea of the eyes. Deficits in the binocular control of saccades and of vergence in dyslexics have been reported previously but only for tasks using single targets. This study examines saccades and vergence control during real text reading. Thirteen dyslexic and seven non-dyslexic children read the French text "L'Allouette" in two viewing distances (40 cm vs. 100 cm), while binocular eye movements were measured with the Chronos Eye-tracking system. We found that the binocular yoking of reading saccades was poor in dyslexic children (relative to non-dyslexics) resulting in vergence errors; their disconjugate drift during fixations was not correlated with the disconjugacy during their saccades, causing considerable variability of vergence angle from fixation to fixation. Due to such poor oculomotor adjustments during reading, the overall fixation disparity was larger for dyslexic children, putting larger demand on their sensory fusion processes. Moreover, for dyslexics the standard deviation of fixation disparity was larger particularly when reading at near distance. We conclude that besides documented phoneme processing disorders, visual/ocular motor imperfections may exist in dyslexics that lead to fixation instability and thus, to instability of the letters or words during reading; such instability may perturb fusional processes and might--in part--complicate letter/word identification.  相似文献   

6.
G Blohm 《PloS one》2012,7(7):e41241
We effortlessly perform reach movements to objects in different directions and depths. However, how networks of cortical neurons compute reach depth from binocular visual inputs remains largely unknown. To bridge the gap between behavior and neurophysiology, we trained a feed-forward artificial neural network to uncover potential mechanisms that might underlie the 3D transformation of reach depth. Our physiologically-inspired 4-layer network receives distributed 3D visual inputs (1(st) layer) along with eye, head and vergence signals. The desired motor plan was coded in a population (3(rd) layer) that we read out (4(th) layer) using an optimal linear estimator. After training, our network was able to reproduce all known single-unit recording evidence on depth coding in the parietal cortex. Network analyses predict the presence of eye/head and vergence changes of depth tuning, pointing towards a gain-modulation mechanism of depth transformation. In addition, reach depth was computed directly from eye-centered (relative) visual distances, without explicit absolute depth coding. We suggest that these effects should be observable in parietal and pre-motor areas.  相似文献   

7.
Covert spatial attention produces biases in perceptual and neural responses in the absence of overt orienting movements. The neural mechanism that gives rise to these effects is poorly understood. Here we report the relation between fixational eye movements, namely eye vergence, and covert attention. Visual stimuli modulate the angle of eye vergence as a function of their ability to capture attention. This illustrates the relation between eye vergence and bottom-up attention. In visual and auditory cue/no-cue paradigms, the angle of vergence is greater in the cue condition than in the no-cue condition. This shows a top-down attention component. In conclusion, observations reveal a close link between covert attention and modulation in eye vergence during eye fixation. Our study suggests a basis for the use of eye vergence as a tool for measuring attention and may provide new insights into attention and perceptual disorders.  相似文献   

8.
Depth constancy is the ability to perceive a fixed depth interval in the world as constant despite changes in viewing distance and the spatial scale of depth variation. It is well known that the spatial frequency of depth variation has a large effect on threshold. In the first experiment, we determined that the visual system compensates for this differential sensitivity when the change in disparity is suprathreshold, thereby attaining constancy similar to contrast constancy in the luminance domain. In a second experiment, we examined the ability to perceive constant depth when the spatial frequency and viewing distance both changed. To attain constancy in this situation, the visual system has to estimate distance. We investigated this ability when vergence, accommodation and vertical disparity are all presented accurately and therefore provided veridical information about viewing distance. We found that constancy is nearly complete across changes in viewing distance. Depth constancy is most complete when the scale of the depth relief is constant in the world rather than when it is constant in angular units at the retina. These results bear on the efficacy of algorithms for creating stereo content.This article is part of the themed issue ‘Vision in our three-dimensional world’.  相似文献   

9.
Fang F  He S 《Current biology : CB》2004,14(3):247-251
3D structures can be perceived based on the patterns of 2D motion signals. With orthographic projection of a 3D stimulus onto a 2D plane, the kinetic information can give a vivid impression of depth, but the depth order is intrinsically ambiguous, resulting in bistable or even multistable interpretations. For example, an orthographic projection of dots on the surface of a rotating cylinder is perceived as a rotating cylinder with ambiguous direction of rotation. We show that the bistable rotation can be stabilized by adding information, not to the dots themselves, but to their spatial context. More interestingly, the stabilized bistable motion can generate consistent rotation aftereffects. The rotation aftereffect can only be observed when the adapting and test stimuli are presented at the same stereo depth and the same retinal location, and it is not due to attentional tracking. The observed rotation aftereffect is likely due to direction-contingent disparity adaptation, implying that stimuli with kinetic depth may have activated neurons sensitive to different disparities, even though the stimuli have zero relative disparity. Stereo depth and kinetic depth may be supported by a common neural mechanism at an early stage in the visual system.  相似文献   

10.
Vision is important for postural control as is shown by the Romberg quotient (RQ): with eyes closed, postural instability increases relative to eyes open (RQ = 2). Yet while fixating at far distance, postural stability is similar with eyes open and eyes closed (RQ = 1). Postural stability can be better with both eyes viewing than one eye, but such effect is not consistent among healthy subjects. The first goal of the study is to test the RQ as a function of distance for children with convergent versus divergent strabismus. The second goal is to test whether vision from two eyes relative to vision from one eye provides better postural stability. Thirteen children with divergent strabismus and eleven with convergent strabismus participated in this study. Posturtography was done with the Techno concept device. Experiment 1, four conditions: fixation at 40 cm and at 200 cm both with eyes open and eyes covered (evaluation of RQ). Experiment 2, six conditions: fixation at 40 cm and at 200 cm, with both eyes viewing or under monocular vision (dominant and non-dominant eye). For convergent strabismus, the groups mean value of RQ was 1.3 at near and 0.94 at far distance; for divergent, it was 1.06 at near and 1.68 at far. For all children, the surface of body sway was significantly smaller under both eyes viewing than monocular viewing (either eye). Increased RQ value at near for convergent and at far for divergent strabismus is attributed to the influence of the default strabismus angle and to better use of ocular motor signals. Vision with the two eyes improves postural control for both viewing distances and for both types of strabismus. Such benefit can be due to complementary mechanisms: larger visual field, better quality of fixation and vergence angle due to the use of visual inputs from both eyes.  相似文献   

11.
Young MP 《Spatial Vision》2000,13(2-3):137-146
This paper is organised approximately into two halves. In the first half, I review evidence about the structure of the visual system, and I use that evidence to frame what I think are widely held but often implicit ideas about how it works, namely that vision is principally analysis of retinal input. These ideas have been strongly influenced by engineering approaches; form a default view of the visual system that suffuses all the language used to describe it (at least in visual neuroscience); and are to some extent supported by the structural evidence. In the second half, I explore some inconvenient facts from neuroanatomy and neurophysiology which are quite uncomfortable for the traditional view. I then set out a contrary view of how structure and function are linked in the visual system, which is a neurobiological variety of the quite developed view in psychophysics that vision is better understood as knowledge-rich inference. Finally, I explore some of the ramifications of this view for neurophysiological understanding of how the visual system might operate during normal vision.  相似文献   

12.
The hollow-face illusion refers to the finding that people typically perceive a concave (hollow) mask as being convex, despite the presence of binocular disparity cues that indicate the contrary. Unlike other illusions of depth, recent research has suggested that the eyes tend to converge at perceived, rather than actual, depths. However, technical and methodological limitations prevented one from knowing whether disparity cues may still have influenced vergence. In the current study, we presented participants with virtual normal or hollow masks and asked them to fixate the tip of the face's nose until they had indicated whether they perceived it as pointing towards or away from them. The results showed that the direction of vergence was indeed determined by perceived depth, although vergence responses were both somewhat delayed and of smaller amplitude (by a factor of about 0.5) for concave than convex masks. These findings demonstrate how perceived depth can override disparity cues when it comes to vergence, albeit not entirely.  相似文献   

13.
Horizontal binocular eye movements of three subjects were recorded with the scleral sensor coil--revolving magnetic field technique during voluntary shifts of gaze between pairs of stationary, real, continuously visible targets. The target pairs were located either along the median plane (requiring symmetrical vergence), or on either side of the median plane (requiring asymmetrical vergence). Symmetrical vergence was primarily smooth, but it was often assisted by small, disjunctive saccades. Peak vergence speeds were very high; they increased from about 50 degrees s-1 for vergence changes of 5 degrees to between 150 and 200 degrees s-1 for vergence changes of 34 degrees. Differences between convergence and divergence were idiosyncratic. Asymmetrical vergence, requiring a vergence of 11 degrees combined with a version of 45 degrees, was largely saccadic. Unequal saccades mediated virtually all (95%) of the vergence required in the divergent direction, whereas 75% of the vergence required in the convergent direction was mediated by unequal saccades, with the remaining convergence mediated by smooth vergence, following completion of the saccades. Peak divergence speeds during these saccades were very high (180 degrees s-1 for a change of vergence of 11 degrees); much faster than the smooth, symmetrical vergence change of comparable size (14 degrees). Peak convergent saccadic speeds were about 20% lower. This difference in peak speed was caused by an initial, transient divergence, observed at the beginning of all horizontal saccades. The waveform of disjunctive saccades did not have the same shape as the waveform of conjugate saccades of similar size. The smaller saccade of the disjunctive pair was stretched out in time so as to have the same duration as its larger, companion saccade. These results permitted the conclusion that the subsystems controlling saccades and vergence are not independent. Vergence responses were relatively slow and incomplete with monocular viewing, which excluded disparity as a cue. Monocularly stimulated vergence decreased as a function of the increasing presbyopia of our three subjects. Subjects were able to generate some vergence in darkness towards previously seen and remembered targets. Such responses, however, were slow, irregular and evanescent. In conclusion, vergence shifts between targets, which provided all natural cues to distance, were fast and accurate; they appeared adequate to provide effective binocular vision under natural conditions. This result could not have been expected on the basis of previous observations, all of which had been made with severely reduced cues to depth.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that-like the tangential cells-NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information.  相似文献   

15.
Multiple cues contribute to the visual perception of an object's distance from the observer. The manner in which the nervous system combines these various cues is of considerable interest. Although it is accepted that image cues play a significant role in distance perception, controversy exists regarding the use of kinaesthetic information about the eyes' state of convergence. We used a perturbation technique to explore the contribution of vergence to visually based distance estimates as a function of both fixation distance and the availability of retinal information. Our results show that the nervous system increases the weighting given to vergence as (i) fixation distance becomes closer; and (ii) the available retinal image cues decrease. We also identified the presence of a strong contraction bias when distance cues were studied in isolation, but we argue that such biases do not suggest that vergence provides an ineffectual signal for near-space perception.  相似文献   

16.
Kim EH  Vicci VR  Han SJ  Alvarez TL 《PloS one》2011,6(6):e20883

Purpose

This study sought to investigate the influence of phoria adaptation on convergence peak velocity from responses located at different initial vergence positions.

Methods

Symmetrical 4° convergence step responses and near dissociated phoria (measured at 40 cm from the subject''s midline) were recorded from six subjects with normal binocular vision using an infrared limbus tracking system with a haploscope. Two different sustained fixations (1° and 16° convergent rotation along the subject''s midline) were used to study whether phoria had an influence on the peak velocity of convergence responses located at two initial vergence positions (1° or ‘far’ steps and 12° or ‘near’ steps).

Results

Phoria was significantly adapted after a sustained fixation task at near (16°) and far (1°) (p<0.002). A repeated measures ANOVA showed that convergence far steps were significantly faster than the near steps (p<0.03). When comparing convergence steps with the same initial vergence position, steps measured after near phoria adaptation were faster than responses after far adaptation (p<0.02). A regression analysis demonstrated that the change in phoria and the change in convergence peak velocity were significantly correlated for the far convergence steps (r = 0.97, p = 0.001). A weaker correlation was observed for the near convergence steps (r = 0.59, p = 0.20).

Conclusion

As a result of sustained fixation, phoria was adapted and the peak velocity of the near and far convergence steps was modified. This study has clinical considerations since prisms, which evoke phoria adaptation, can be prescribed to help alleviate visual discomfort. Future investigations should include a systematic study of how prisms may influence convergence and divergence eye movements for those prescribed with prisms within their spectacles.  相似文献   

17.
The vestibulo-ocular reflex rotates the eye about the axis of a head rotation at the same speed but in the opposite direction to make the visual axes in space independent of head motion. This reflex works in all three degrees of freedom: roll, pitch, and yaw. The rotations may be described by vectors and the reflex by a transformation in the form of a matrix. The reflex consists of three parts: sensory, central, and motor. The transduction of head rotation into three neural signals, which may also be described by a vector, is described by a canal matrix. The neural, motorcommand vector is transformed to an eye rotation by a muscle matrix. Since these two matrices are known, one can solve for the central matrix which gives the strength of the connections between all the vestibular neurons and all the eye-muscle motoneurons. The role of the metric tensor in these transformations is described. This method of analysis is used in three applications. A lesion may be simulated by altering the elements in any or all of the three component matrices. By matrix multiplication, the resulting abnormal behavior of the reflex can be described quantitatively in all degrees of freedom. The method is also used to directly compare the differences in brain-stem connections between humans and rabbits that accommodate the altered actions of the muscles of the two species. Finally the method allows a quantitative assessment of the changes that take place in the brainstem connections when plastic changes are induced by artificially dissociating head movements from apparent motion of the visual environment.  相似文献   

18.
K Spang  B Gillam  M Fahle 《PloS one》2012,7(8):e40562
A small region of background presented to only one eye in an otherwise binocular display may, under certain conditions, be resolved in the visual system by interpreting the region as a small gap between two similar objects placed at different depths, with the gap hidden in one eye by parallax. This has been called monocular gap stereopsis. We investigated the electrophysiological correlate of this type of stereopsis by means of sum potential recordings in 12 observers, comparing VEP's for this stimulus ("Gillam Stereo", Author BG has strong reservations about this term) with those for similar stimuli containing disparity based depth and with no depth (flat). In addition we included several control stimuli. The results show a pronounced early negative potential at a latency of around 170 ms (N170) for all stimuli containing non- identical elements, be they a difference caused by binocular disparity or by completely unmatched monocular contours. A second negative potential with latency around 270 ms (N270), on the other hand, is present only with stimuli leading to fusion and the perception of depth. This second component is similar for disparity-based stereopsis and monocular gap, or "Gillam Stereo" although slightly more pronounced for the former. We conjecture that the first component is related to the detection of differences between the images of the two eyes that may then either be fused, leading to stereopsis and the corresponding second potential, or else to inhibition and rivalry without a later trace in the VEP. The finding that that "Gillam Stereo" leads to cortical responses at the same short latencies as disparity based stereopsis indicates that it may partly rely on quite early cortical mechanisms.  相似文献   

19.
The proper association between planned and executed movements is crucial for motor learning because the discrepancies between them drive such learning. Our study explored how this association was determined when a single action caused the movements of multiple visual objects. Participants reached toward a target by moving a cursor, which represented the right hand’s position. Once every five to six normal trials, we interleaved either of two kinds of visual perturbation trials: rotation of the cursor by a certain amount (±15°, ±30°, and ±45°) around the starting position (single-cursor condition) or rotation of two cursors by different angles (+15° and −45°, 0° and 30°, etc.) that were presented simultaneously (double-cursor condition). We evaluated the aftereffects of each condition in the subsequent trial. The error sensitivity (ratio of the aftereffect to the imposed visual rotation) in the single-cursor trials decayed with the amount of rotation, indicating that the motor learning system relied to a greater extent on smaller errors. In the double-cursor trials, we obtained a coefficient that represented the degree to which each of the visual rotations contributed to the aftereffects based on the assumption that the observed aftereffects were a result of the weighted summation of the influences of the imposed visual rotations. The decaying pattern according to the amount of rotation was maintained in the coefficient of each imposed visual rotation in the double-cursor trials, but the value was reduced to approximately 40% of the corresponding error sensitivity in the single-cursor trials. We also found a further reduction of the coefficients when three distinct cursors were presented (e.g., −15°, 15°, and 30°). These results indicated that the motor learning system utilized multiple sources of visual error information simultaneously to correct subsequent movement and that a certain averaging mechanism might be at work in the utilization process.  相似文献   

20.
Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号