首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of necrosis-inducing lipodepsipeptide toxins, called syringomycin and syringopeptin, are major virulence factors of Pseudomonas syringae pv. syringae strain B301D. A previous study showed that a locus, called syrA, was required for both syringomycin production and plant pathogenicity, and the syrA locus was speculated to encode a regulator of toxin production. In this study, sequence analysis of the 8-kb genomic DNA fragment that complements the syrA phenotype revealed high conservation among a broad spectrum of fluorescent pseudomonads. The putative protein encoded by open reading frame 4 (ORF4) (1,299 bp) in the syrA locus region exhibited 85% identity to ArgA, which is involved in arginine biosynthesis in Pseudomonas aeruginosa. Growth of strain W4S2545, the syrA mutant, required supplementation of N minimal medium with arginine. Similarly, syringomycin production of syrA mutant W4S2545 was restored by the addition of arginine to culture media. Furthermore, the insertion of Tn5 in the genome of the syrA mutant W4S2545 was localized between nucleotides 146 and 147 in ORF4, and syringomycin production was complemented in trans with the wild-type DNA fragment containing intact ORF4. These results demonstrate that the syrA locus is the argA gene of P. syringae pv. syringae and that argA is directly involved in arginine biosynthesis and therefore indirectly affects syringomycin production because of arginine deficiency.  相似文献   

2.
Two types of necrosis-inducing lipodepsipeptide toxins, called syringomycin and syringopeptin, are major virulence factors of Pseudomonas syringae pv. syringae strain B301D. A previous study showed that a locus, called syrA, was required for both syringomycin production and plant pathogenicity, and the syrA locus was speculated to encode a regulator of toxin production. In this study, sequence analysis of the 8-kb genomic DNA fragment that complements the syrA phenotype revealed high conservation among a broad spectrum of fluorescent pseudomonads. The putative protein encoded by open reading frame 4 (ORF4) (1,299 bp) in the syrA locus region exhibited 85% identity to ArgA, which is involved in arginine biosynthesis in Pseudomonas aeruginosa. Growth of strain W4S2545, the syrA mutant, required supplementation of N minimal medium with arginine. Similarly, syringomycin production of syrA mutant W4S2545 was restored by the addition of arginine to culture media. Furthermore, the insertion of Tn5 in the genome of the syrA mutant W4S2545 was localized between nucleotides 146 and 147 in ORF4, and syringomycin production was complemented in trans with the wild-type DNA fragment containing intact ORF4. These results demonstrate that the syrA locus is the argA gene of P. syringae pv. syringae and that argA is directly involved in arginine biosynthesis and therefore indirectly affects syringomycin production because of arginine deficiency.  相似文献   

3.
Abstract The influence of cysteine and serine in the production of syringomycin by Pseudomonas syringae pv. syringae has been studied. Both amino acids increased toxin synthesis in wild-type strains, although cysteine has a higher stimulatory effect than serine. To corroborate the role of cysteine in the production of syringomycin, a Cys mutant of P. syringae pv. syringae was isolated by transpositional mutagenesis with Tn5; this Cys mutant did not produce syringomycin. Nevertheless, and after the addition of high concentrations of cysteine, the cys ∷Tn5 mutant recovered its ability to produce syringomycin. On the other hand, the addition of serine did not return the production of syringomycin to the sys ∷ Tn5 strain: all these data indicated that cysteine modulates the synthesis of syringomycin in P. syringae pv. syringae positively.  相似文献   

4.
5.
The syrA and syrB genes involved in syringomycin production in Pseudomonas syringae pv. syringae B301D were identified from an EcoRI-pLAFR3 cosmid library and then physically and functionally analyzed in relation to plant pathogenicity. Homologous recombination of the genes required for syringomycin production from cosmids pGX183 (syrA) and pGX56 (syrB), respectively, introduced into nontoxigenic (Tox-) Tn5 mutants W4S2545 and W4S770 resulted in the concomitant restoration of toxin production and full virulence. The disease indices of the Tox+ strains obtained by recombination of the cloned, homologous DNA into the corresponding Tn5 mutant were essentially equivalent to that of strain B301D-R and significantly higher than those of W4S2545 and W4S770. A 12-kilobase (kb) EcoRI fragment from pGX183 was subcloned (i.e., pGX15) and found to contain the sequences necessary for syringomycin production. A map of pGX15 prepared by a combination of restriction endonuclease digestions and Tn5 mutagenesis showed that the syrA sequence was 2.3 to 2.8 kb. Marker exchange of syrA::Tn5 from pGX15 into B301D-R yielded nonpathogenic phenotypes, indicating that syrA is a regulatory gene since it is necessary for both syringomycin production and pathogenicity. The 4.9-kb EcoRI fragment from pGX56 was subcloned (i.e., pGX4) and shown to carry the syrB sequence which was 2.4 to 3.3 kb. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of protein extracts from B301D-R associated five proteins, ranging from approximately 130,000 to approximately 470,000 in molecular weight, with syringomycin production. The syrA and syrB genes were required for the formation of proteins SR4 (approximately 350,000) and SR5 (approximately 130,000), which are believed to be components of the syringomycin synthetase complex.  相似文献   

6.
Singh GM  Fortin PD  Koglin A  Walsh CT 《Biochemistry》2008,47(43):11310-11320
The pseudomonal phytotoxin syringomycin E and related nonribosomal peptides contain an L- threo-beta-hydroxyaspartyl residue at the eighth position of the lipodepsipeptide backbone as part of a conserved nonproteinogenic tripeptide motif. Informatic analysis of the P. syringae genome suggests only one putative non-heme iron hydroxylase, AspH. On heterologous expression in Escherichia coli AspH shows robust catalytic activity with free L-Asp and L-Asp thioesters to make beta-OH-Asp but yields the erythro diastereomer rather than the threo configuration that is found in syringomycin. Further analysis of the Syr gene cluster indicated that SyrP, previously annotated as the gene regulatory protein for the five-gene Syr cluster, is actually homologous to the known non-heme mononuclear iron hydroxylase TauD. Indeed, purified SyrP acts on Asp tethered as the protein-bound S-pantetheinyl thioester on the eighth module of the SyrE megasynthetase. The hydroxylation gives the anticipated L- threo-3-OH-Asp diastereomer found in syringomycin. The knockout of syrP abolishes the production of the mature syringomycin E, while knockout of aspH has no effect on syringomycin production.  相似文献   

7.
Sequence analysis of the right border of the syr gene cluster of Pseudomonas syringae pv. syringae strain B301D revealed the presence of the salA gene 8,113 bp downstream of syrE. The predicted SalA protein of strain B301D differs by one amino acid from that of strain B728a. Two homologs of salA, designated syrF and syrG, were identified between syrE and salA. All three proteins contain helix-turn-helix DNA-binding motifs at their C termini and exhibit homology to regulatory proteins of the LuxR family. A salA mutant failed to produce syringomycin, whereas syrF and syrG mutants produced 12 and 50%, respectively, of syringomycin relative to the wild-type strain. The salA, syrF, and syrG mutants were significantly reduced in virulence, forming small, nonspreading lesions in immature cherry fruits. Translational fusions to the uidA gene were constructed to evaluate expression of syrB1 in regulatory mutant backgrounds and to determine the relationship among the three regulatory loci. Expression of a syrB1::uidA fusion required functional salA and syrF genes and, in series, the expression of a syrF::uidA fusion required a functional salA gene. These results demonstrate that salA is located upstream of syrF in the regulatory hierarchy controlling syringomycin production and virulence in P. syringae pv. syringae.  相似文献   

8.
Sequencing of an approximately 3.9-kb fragment downstream of the syrD gene of Pseudomonas syringae pv. syringae strain B301D revealed that this region, designated sypA, codes for a peptide synthetase, a multifunctional enzyme involved in the thiotemplate mechanism of peptide biosynthesis. The translated protein sequence encompasses a complete amino acid activation module containing the conserved domains characteristic of peptide synthetases. Analysis of the substrate specificity region of this module indicates that it incorporates 2,3-dehydroaminobutyric acid into the syringopeptin peptide structure. Bioassay and high performance liquid chromatography data confirmed that disruption of the sypA gene in strain B301D resulted in the loss of syringopeptin production. The contribution of syringopeptin and syringomycin to the virulence of P. syringae pv. syringae strain B301D was examined in immature sweet cherry with sypA and syrB1 synthetase mutants defective in the production of the two toxins, respectively. Syringopeptin (sypA) and syringomycin (syrB1) mutants were reduced in virulence 59 and 26%, respectively, compared with the parental strain in cherry, whereas the syringopeptin-syringomycin double mutant was reduced 76% in virulence. These data demonstrate that syringopeptin and syringomycin are major virulence determinants of P. syringae pv. syringae.  相似文献   

9.
10.
11.
Production of the phytotoxins syringomycin and syringopeptin by Pseudomonas syringae pv. syringae is controlled by the regulatory genes salA and syrF. Analysis with 70-mer oligonucleotide microarrays established that the syr-syp genes responsible for synthesis and secretion of syringomycin and syringopeptin belong to the SyrF regulon. Vector pMEKm12 was successfully used to express both SalA and SyrF proteins fused to a maltose-binding protein (MBP) in Escherichia coli and P. syringae pv. syringae. Both the MBP-SalA and MBP-SyrF fusion proteins were purified by maltose affinity chromatography. Gel shift analysis revealed that the purified MBP-SyrF, but not the MBP-SalA fusion protein, bound to a 262-bp fragment of the syrB1 promoter region containing the syr-syp box. Purified MBP-SalA caused a shift of a 324-bp band containing the putative syrF promoter. Gel filtration analysis and cross-linking experiments indicated that both SalA and SyrF form homodimers in vitro. Overexpression of the N-terminal regions of SalA and SyrF resulted in decreased syringomycin production by strain B301D and reduced levels of beta-glucuronidase activities of the sypA::uidA and syrB1::uidA reporters by 59% to 74%. The effect of SalA on the expression of the syr-syp genes is mediated by SyrF, which activates the syr-syp genes by directly binding to the promoter regions. Both SalA and SyrF resemble other LuxR family proteins in dimerization and interaction with promoter regions of target genes.  相似文献   

12.
13.
A mutational analysis of lesion-forming ability was undertaken in Pseudomonas syringae pv. syringae B728a, causal agent of bacterial brown spot disease of bean. Following a screen of 6,401 Tn5-containing derivatives of B728a on bean pods, 26 strains that did not form disease lesions were identified. Nine of the mutant strains were defective in the ability to elicit the hypersensitive reaction (HR) and were shown to contain Tn5 insertions within the P. syringae pv. syringae hrp region. Ten HR+ mutants were defective in the production of the toxin syringomycin, and a region of the chromosome implicated in the biosynthesis of syringomycin was deleted in a subset of these mutants. The remaining seven lesion-defective mutants retained the ability to produce protease and syringomycin. Marker exchange mutagenesis confirmed that the Tn5 insertion was causal to the mutant phenotype in several lesion-defective, HR+ strains. KW239, a lesion- and syringomycin-deficient mutant, was characterized at the molecular level. Sequence analysis of the chromosomal region flanking the Tn5 within KW239 revealed strong similarities to a number of known Escherichia coli gene products and DNA sequences: the nusA operon, including the complete initiator tRNA(Met) gene, metY; a tRNA(Leu) gene; the tpiA gene product; and the MrsA protein. Removal of sequences containing the two potential tRNA genes prevented restoration of mutant KW239 in trans. The Tn5 insertions within the lesion-deficient strains examined, including KW239, were not closely linked to each other or to the lemA or gacA genes previously identified as involved in lesion formation by P. syringae pv. syringae.  相似文献   

14.
Abstract Syringomycin and syringopeptin are lipodepsipeptide phytotoxins produced by Pseudomonas syringae pv. syringae . Four syr genes were identified previously and hypothesized to be involved in the regulation ( syrA ), biosynthesis ( syrB and syrC ), or export ( syrD ) of syringomycin. This study determines the influence of syr mutations on the composition of phytotoxic metabolites produced by P. syringae pv. syringae strain B301D-R. Levels of syringomycin and syringopeptin produced in liquid cultures were estimated by reverse phase HPLC analyses and differential antimicrobial assays. Significant quantities of syringopeptin were produced by both syrB and syrC mutants despite their inability to produce syringomycin. Only trace quantities of both lipodepsipeptides were produced by syrA and syrD mutants of P. syringae pv. syringae . These results indicate that syringomycin and syringopeptin are synthesized by separate pathways, but may share common mechanisms for secretion and regulation.  相似文献   

15.
Genetic and phenotypic mapping of an approximately 145-kb DraI fragment of Pseudomonas syringae pv. syringae strain B301D determined that the syringomycin (syr) and syringopeptin (syp) gene clusters are localized to this fragment. The syr and syp gene clusters encompass approximately 55 kb and approximately 80 kb, respectively. Both phytotoxins are synthesized by a thiotemplate mechanism of biosynthesis, requiring large multienzymatic proteins called peptide synthetases. Genes encoding peptide synthetases were identified within the syr and syp gene clusters, accounting for 90% of the DraI fragment. In addition, genes encoding regulatory and secretion proteins were localized to the DraI fragment. In particular, the salA gene, encoding a regulatory element responsible for syringomycin production and lesion formation in P. syringae pv. syringae strain B728a, was localized to the syr gene cluster. A putative ATP-binding cassette (ABC) transporter homolog was determined to be physically located in the syp gene cluster, but phenotypically affects production of both phytotoxins. Preliminary size estimates of the syr and syp gene clusters indicate that they represent two of the largest nonribosomal peptide synthetase gene clusters. Together, the syr and syp gene clusters encompass approximately 135 kb of DNA and may represent a genomic island in P. syringae pv. syringae that contributes to virulence in plant hosts.  相似文献   

16.
Production of the phytotoxin, syringomycin (SR), by Pseudomonas syringae pv. syringae strain B301D was regulated by both iron and inorganic phosphate similar to that of many bacterial secondary metabolites. Iron concentrations of 2 µmol/1 or more in deferrated potato-dextrose broth (PDB) resulted in the production of 1024 SR units/ml, a yield comparable to that produced in non-deferrated PDB. Moreover, production of one SR unit required approximately 0†4 ng of available FeCl3. No SR was produced by strain B301D in deferrated PDB despite growth nearly identical with that of B301D in deferrated PDB supplemented with 10 µmol/1 FeCl3. Furthermore, a phosphate concentration of 1 mmol/1 or more was suppressive to SR production. Of the amino acids tested, L-histidine at a concentration of ca 20 mmol/1 was the most effective nitrogen source for SR synthesis under defined conditions. Based on these observations, a synthetic medium, SR minimal, was formulated for SR or syringotoxin production by representative strains of Ps. syringae pv. syringae. The regulation of phytotoxin production is discussed in relation to pathogen survival and virulence.  相似文献   

17.
Pseudomonas syringae pv. syringae, which causes the bacterial apical necrosis of mango, produces the antimetabolite mangotoxin. We report here the cloning, sequencing, and identity analysis of a chromosomal region of 11.1 kb from strain P syringae pv. syringae UMAF0158, which is involved in mangotoxin biosynthesis. This chromosomal region contains six complete open reading frames (ORFs), including a large gene (ORF5) with a modular architecture characteristic of nonribosomal peptide synthetases (NRPS) named mgoA. A Tn5 mutant disrupted in mgoA was defective in mangotoxin production, revealing the involvement of the putative NRPS gene in the biosynthesis of mangotoxin. This derivative strain impaired in mangotoxin production also showed a reduction in virulence as measured by necrotic symptoms on tomato leaflets. Mangotoxin production and virulence were restored fully in the NRPS mutant by complementation with plasmid pCG2-6, which contains an 11,103-bp chromosomal region cloned from the wild-type strain P syringae pv. syringae UMAF0158 that includes the putative NPRS gene (mgoA). The results demonstrate that mgoA has a role in the virulence of P. syringae pv. syringae. The involvement of an NRPS in the production of an antimetabolite toxin from P. syringae inhibiting ornithine acetyltransferase activity is proposed.  相似文献   

18.
19.
In an iron-limited environment Pseudomonas syringae pv. syringae B301D produces a yellow-green fluorescent siderophore called pyoverdinpss which functions in high-affinity iron transport. Two-dimensional electrophoretic comparisons of the outer membrane proteins of strain B301D identified nine proteins which were expressed at low (50 nM) but not at high (10 microM) iron concentrations. Except for the minor protein 8e, the iron-regulated proteins exhibited high molecular weights ranging from approximately 74,000 to 80,000. A mutant of strain B301D incapable of iron uptake (Iu-) from ferric pyoverdinpss lacked the 74,000-molecular-weight protein 4a, which was the major iron-regulated outer membrane protein. In contrast, a nonfluorescent mutant (Flu-) unable to synthesize pyoverdinpss showed no quantitative or qualitative difference in its outer membrane profile from that of the wild-type strain. In plant pathogenicity tests the Iu- and Flu- strains caused typical brown necrotic and sunken lesions in immature sweet cherry fruit which were indistinguishable from those of the wild-type strain. Thus, excretion of pyoverdinpss and subsequent Fe(III) uptake do not have a determinative role in the pathogenicity or virulence of P. syringae pv. syringae.  相似文献   

20.
Toxin-based identification procedures are useful for differentiating Pseudomonas syringae pathovars. A biological test on peptone-glucose-NaCl agar in which the yeast Rhodotorula pilimanae was used proved to be more reliable for detecting lipodepsipeptide-producing strains of P. syringae than the more usual test on potato dextrose agar in which Geotrichum candidum is used. A PCR test performed with primers designed to amplify a 1, 040-bp fragment in the coding sequence of the syrD gene, which was assumed to be involved in syringomycin and syringopeptin secretion, efficiently detected the gene in pathovars that produce the lipodepsipeptides. Comparable results were obtained in both tests performed with strains of the syringomycin-producing organisms P. syringae pv. syringae, P. syringae pv. atrofaciens, and P. syringae pv. aptata, but the PCR test failed with a syringotoxin-producing Pseudomonas fuscovaginae strain. The specificity of the test was verified by obtaining negative PCR test results for related pathovars or species that do not produce the toxic lipodepsipeptides. P. syringae pv. syringae was detected repeatedly in liquid medium inoculated with diseased vegetative tissue and assayed by the PCR test. Our procedure was also adapted to detect P. syringae pv. morsprunorum with a cfl gene-based PCR test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号