首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ecosystem resilience is the inherent ability to absorb various disturbances and reorganize while undergoing state changes to maintain critical functions. When ecosystem resilience is sufficiently degraded by disturbances, ecosystem is exposed at high risk of shifting from a desirable state to an undesirable state. Ecological thresholds represent the points where even small changes in environmental conditions associated with disturbances lead to switch between ecosystem states. There is a growing body of empirical evidence for such state transitions caused by anthropogenic disturbances in a variety of ecosystems. However, fewer studies addressed the interaction of anthropogenic and natural disturbances that often force an ecosystem to cross a threshold which an anthropogenic disturbance or a natural disturbance alone would not have achieved. This fact highlights how little is known about ecosystem dynamics under uncertainties around multiple and stochastic disturbances. Here, we present two perspectives for providing a predictive scientific basis to the management and conservation of ecosystems against multiple and stochastic disturbances. The first is management of predictable anthropogenic disturbances to maintain a sufficient level of biodiversity for ensuring ecosystem resilience (i.e., resilience-based management). Several biological diversity elements appear to confer ecosystem resilience, such as functional redundancy, response diversity, a dominant species, a foundation species, or a keystone species. The greatest research challenge is to identify key elements of biodiversity conferring ecosystem resilience for each context and to examine how we can manage and conserve them. The second is the identification of ecological thresholds along existing or experimental disturbance gradients. This will facilitate the development of indicators of proximity to thresholds as well as the understanding of threshold mechanisms. The implementation of forewarning indicators will be critical particularly when resilience-based management fails. The ability to detect an ecological threshold along disturbance gradients should therefore be essential to establish a backstop for preventing the threshold from being crossed. These perspectives can take us beyond simply invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical solutions to cope with uncertainties and ecological surprises in a changing world.  相似文献   

2.
The available taxonomic expertise and knowledge of species is still inadequate to cope with the urgent need for cost‐effective methods to quantifying community response to natural and anthropogenic drivers of change. So far, the mainstream approach to overcome these impediments has focused on using higher taxa as surrogates for species. However, the use of such taxonomic surrogates often limits inferences about the causality of community patterns, which in turn is essential for effective environmental management strategies. Here, we propose an alternative approach to species surrogacy, the “Best Practicable Aggregation of Species” (BestAgg), in which surrogates exulate from fixed taxonomic schemes. The approach uses null models from random aggregations of species to minimizing the number of surrogates without causing significant losses of information on community patterns. Surrogate types are then selected in order to maximize ecological information. We applied the approach to real case studies on natural and human‐driven gradients from marine benthic communities. Outcomes from BestAgg were also compared with those obtained using classic taxonomic surrogates. Results showed that BestAgg surrogates are effective in detecting community changes. In contrast to classic taxonomic surrogates, BestAgg surrogates allow retaining significantly higher information on species‐level community patterns than what is expected to occur by chance and a potential time saving during sample processing up to 25% higher. Our findings showed that BestAgg surrogates from a pilot study could be used successfully in similar environmental investigations in the same area, or for subsequent long‐term monitoring programs. BestAgg is virtually applicable to any environmental context, allowing exploiting multiple surrogacy schemes beyond stagnant perspectives strictly relying on taxonomic relatedness among species. This prerogative is crucial to extend the concept of species surrogacy to ecological traits of species, thus leading to ecologically meaningful surrogates that, while cost effective in reflecting community patterns, may also contribute to unveil underlying processes. A specific R code for BestAgg is provided.  相似文献   

3.
1. In this issue we aimed to answer the questions: (i) under what circumstances are functional variables better than structural ones for assessing ecosystem health? and (ii) are there good indicators of change in ecological functioning along perturbation gradients?
2. Of the numerous functional indicators tested in this issue, several show a response to anthropogenic stress and could be included in assessments of ecosystem health and integrity in running waters.
3. In three of eight studies, function showed a stronger response to anthropogenic stress than structure, whereas one study showed a response in structure and not function, and four studies showed responses in both structure and function. Thus structure alone could not detect all types of impairment and functional aspects should also be included and further developed for assessing running-water ecosystem health and integrity. Functional variables may be especially useful in situations where there is a stronger response among organisms not usually included in stream assessment (e.g. fungi and bacteria) than the commonly used invertebrate, macrophytes and fish indicators.
4. Leading research questions related to the use of functional indicators in running waters include: (i) how large is natural and operator-induced variation for functional indicators? (ii) how small of an effect size (delta) can be detected using structural versus functional indicators? and (iii) how do we efficiently improve theories as well as predictive ability for functional measures to assess the effects of anthropogenic stressors?
5. To advance the use of functional indicators in applied running-water studies, we need to supplement the approach of using large-scale datasets and correlation with ecosystem manipulations.  相似文献   

4.
Until recently, the general biodiversity concepts have suggested common patterns of species richness dynamics for both small planktonic and large benthic organisms in the gradients of environmental factors, including salinity, which is the major abiotic characteristic that influences the diversity of flora and fauna in coastal marine ecosystems. Recent studies discovered an extremely species-rich aquatic microworld and resulted in proposing new concepts and shifting the paradigms in biodiversity studies, including those on planktonic unicellular eukaryotes such as protists. As a result, Remane’s species-minimum concept has been revisited and the range of its application updated. This paper provides a review of the studies dedicated to establishing, developing, and analyzing the novel protistan species-maximum concept for the critical salinity zone (5–8‰), or the horohalinicum. The obtained new data contribute to the formation of the modern views on aquatic ecosystem dynamics, biodiversity conservation, and effective ecological management aimed at maintaining the environmental balance and the rational use of marine biological resources.  相似文献   

5.
Environmental stress and nutrient/productivity models predict the responses of community structure along gradients of physical conditions and bottom-up effects. Although both models have succeeded in helping to understand variation in ecological communities, most tests have been qualitative. Until recently, two roadblocks to more quantitative tests in marine environments have been a lack of (1) inexpensive, field-deployable technology for quantifying (e.g.) temperature, light, salinity, chlorophyll, and productivity, and (2) methods of quantifying the sub-organismal mechanisms linking environmental conditions to their ecological expression. The advent of inexpensive remote-sensing technology, adoption of molecular techniques such as quantification of heat-shock proteins and RNA:DNA ratios, and the formation of interdisciplinary alliances between ecologists and physiologists has begun to overcome these roadblocks. An integrated eco-physiological approach focuses on the determinants of: distributional limits among microhabitat patches and along (local-scale) environmental gradients (e.g., zonation); among-site (mesoscale) differences in community pattern; and geographic (macroscale) differences in ecosystem structure. These approaches promise new insights into the physiological mechanisms underlying variation in processes such as species interactions, physical disturbance, survival and growth. Here, we review two classes of models for community dynamics, and present examples of ecological studies of these models in consumer-prey systems. We illustrate the power of new molecular tools to characterize the sub-organismal responses of some of the same consumers and prey to thermal stress and food concentration. Ecological and physiological evidence tends to be consistent with model predictions, supporting our argument that we are poised to make major advances in the mechanistic understanding of community dynamics along key environmental gradients.  相似文献   

6.
Assessing the ecological impacts of anthropogenic pressures is a key task in environmental management. Multimetric indices (MMIs), based on aquatic assemblage responses to anthropogenic pressures, have been used increasingly throughout the world. The MMI approach is a low-cost, rapid field method that produces an aquatic condition index that responds precisely to anthropogenic pressures, making it useful for conservation and environmental management. We developed four candidate MMIs based on benthic macroinvertebrate assemblages sampled at 40 randomly selected sites to assess the environmental condition of streams upstream of a hydroelectric power plant in the Brazilian Neotropical Savanna biome. Those MMIs were built from landscape-adjusted and unadjusted biological metrics as well as two alternative ways of choosing metrics. The alternative MMIs performances were tested by comparing their precision to distinguish least-disturbed areas, responsiveness to discriminate least- and most-disturbed areas, and sensitivity to anthropogenic pressures at catchment and local scales. The best performing MMI had landscape-adjusted metrics and was produced through use of principal component analysis for metric selection. It included 4 metrics: Ephemeroptera richness, average tolerance score per taxon, percentage of predator individuals, and percentage of Odonata individuals adjusted by elevation. This index discriminated well the anthropogenic pressures at local- and catchment-scales, and at both scales simultaneously, as indicated by an integrated disturbance index. Our methodological development included statistical criteria for identifying least- and most-disturbed sites, calibrating for natural landscape variability, and use of non-redundant metrics. Therefore, we expect it will provide a model for environmental assessment of water resources elsewhere in Brazil and in other nations.  相似文献   

7.
Plant-pollinator interaction networks may be more informative than the diversity of species in the evaluation of the effects of environmental change. Considering that networks vary with the integrity of ecosystems, their changes may help to predict the consequences of anthropogenic impacts on biodiversity and ecological processes. This characteristic highlights its use as environmental quality indicator. However, to employ interaction networks as ecological indicators it is necessary to identify the most sensitive metrics and understand how and why they vary with environmental changes. This review aimed to identify, in empirical studies, which network metrics have been evidenced as being more sensitive to changes in environmental quality. We analyzed published empirical studies, that applied the network approach on environmental quality gradients. In addition to the network metric behavior, we studied the interactions between them and possible causes of their variation. The available empirical data indicated that degree, nestedness and connectance did not have a simple, linear or unidirectional response to habitat degradation. Conversely, the metrics interaction asymmetry, d' (reciprocal specialization index of the species) showed the most consistent responses to environmental change. The role of the species changed, ranging between generalists and specialists under different conditions. In addition, specialist species with morphological and behavioral constraints were lost in worse environmental quality situations. The identity of interacting species and their role in the network, with a further specification of groups and interactions most affected, are the properties with greater potential to indicate changes in environmental quality. Most of the available studies focused on metrics at the network level, but several studies and this review indicate that the patterns at the network level can be better understood in the light of metrics analyzed at the species level. Our results provide information that enrich the network analysis, highlighting the need to consider important features that are often neglected. Discussions and information compiled here are important for deciding how to look at empirical data and what to look for, as well as to indicate some caveats when interpreting data on plant-pollinator interactions with a complex network approach. Network metrics can be good indicators of environmental quality if the underlying ecological causes of the numerical changes are carefully analyzed.  相似文献   

8.
Emphasis has increased on accuracy in predicting the effect that anthropogenic stress has on natural ecosystems. Although toxicity tests low in environmental realism, such as standardized single species procedures, have been useful in providing a certain degree of protection to human health and the environment, the accuracy of such tests for predicting the effects of anthropogenic activities on complex ecosystems is questionable. The use of indigenous communities of microorganisms to assess the hazard of toxicants in aquatic ecosystems has many advantages. Theoretical and practical aspects of microbial community tests are discussed, particularly in related to widely cited problems in the use of multispecies test systems for predicting hazard. Further standardization of testing protocols using microbial colonization dynamics is advocated on the basis of previous studies, which have shown these parameters to be useful in assessing risk and impact of hazardous substances in aquatic ecosystems.  相似文献   

9.
Most rivers worldwide are highly regulated by anthropogenic activities through flow regulation and water pollution. Environmental flow regulation is used to reduce the effects of anthropogenic activities on aquatic ecosystems. Formulating flow alteration–ecological response relationships is a key factor in environmental flow assessment. Traditional environmental flow models are characterized by natural relationships between flow regimes and ecosystem factors. However, food webs are often altered from natural states, which disturb environmental flow assessment in such ecosystems. In ecosystems deteriorated by heavy anthropogenic activities, the effects of environmental flow regulation on species are difficult to assess with current modeling approaches. Environmental flow management compels the development of tools that link flow regimes and food webs in an ecosystem. Food web approaches are more suitable for the task because they are more adaptive for disordered multiple species in a food web deteriorated by anthropogenic activities. This paper presents a global method of environmental flow assessment in deteriorated aquatic ecosystems. Linkages between flow regimes and food web dynamics are modeled by incorporating multiple species into an ecosystem to explore ecosystem-based environmental flow management. The approach allows scientists and water resources managers to analyze environmental flows in deteriorated ecosystems in an ecosystem-based way.  相似文献   

10.
Ongoing anthropogenic change is altering the planet at an unprecedented rate, threatening biodiversity, and ecosystem functioning. Species are responding to abiotic pressures at both individual and population levels, with changes affecting trophic interactions through consumptive pathways. Collectively, these impacts alter the goods and services that natural ecosystems will provide to society, as well as the persistence of all species. Here, we describe the physiological and behavioral responses of species to global changes on individual and population levels that result in detectable changes in diet across terrestrial and marine ecosystems. We illustrate shifts in the dynamics of food webs with implications for animal communities. Additionally, we highlight the myriad of tools available for researchers to investigate the dynamics of consumption patterns and trophic interactions, arguing that diet data are a crucial component of ecological studies on global change. We suggest that a holistic approach integrating the complexities of diet choice and trophic interactions with environmental drivers may be more robust at resolving trends in biodiversity, predicting food web responses, and potentially identifying early warning signs of diversity loss. Ultimately, despite the growing body of long-term ecological datasets, there remains a dearth of diet ecology studies across temporal scales, a shortcoming that must be resolved to elucidate vulnerabilities to changing biophysical conditions.  相似文献   

11.
The main objectives of this work were to examine the performance of a holistic stochastic dynamic methodology (StDM) in predicting the trends of the vertebrate species richness (amphibians, reptiles, birds and mammals) in response to changes induced by the ongoing wind farm installation in mountain areas of northwest Portugal. The StDM is a sequential modelling process developed in order to estimate the ecological status of changed ecosystems that have been damaged by anthropogenic disturbances. The performance of two complementary temporal approaches was tested, taking into account either annual or seasonal influences. The data used in the dynamic model construction included true gradients of environmental changes and was sampled from 2004 to 2006. The dynamic model developed was preceded by a conventional multivariate statistical procedure performed to discriminate the significant relationships between the selected ecological components, such as the species richness of each vertebrate group and the structural changes in habitat conditions. The results show the capacity of the model in capturing the dynamics of the studied system by predicting consistent trends for the global vertebrate species richness under complex and variable environmental scenarios. The average annual approach is considered sufficient for the aims of the most Environmental Impact Assessments while the seasonal approach is recommended for more detailed studies, namely regarding specific population, guilds or community dynamics.  相似文献   

12.
Plant community ecologists use the null model approach to infer assembly processes from observed patterns of species co‐occurrence. In about a third of published studies, the null hypothesis of random assembly cannot be rejected. When this occurs, plant ecologists interpret that the observed random pattern is not environmentally constrained – but probably generated by stochastic processes. The null model approach (using the C‐score and the discrepancy index) was used to test for random assembly under two simulation algorithms. Logistic regression, distance‐based redundancy analysis, and constrained ordination were used to test for environmental determinism (species segregation along environmental gradients or turnover and species aggregation). This article introduces an environmentally determined community of alpine hydrophytes that presents itself as randomly assembled. The pathway through which the random pattern arises in this community is suggested to be as follows: Two simultaneous environmental processes, one leading to species aggregation and the other leading to species segregation, concurrently generate the observed pattern, which results to be neither aggregated nor segregated – but random. A simulation study supports this suggestion. Although apparently simple, the null model approach seems to assume that a single ecological factor prevails or that if several factors decisively influence the community, then they all exert their influence in the same direction, generating either aggregation or segregation. As these assumptions are unlikely to hold in most cases and assembly processes cannot be inferred from random patterns, we would like to propose plant ecologists to investigate specifically the ecological processes responsible for observed random patterns, instead of trying to infer processes from patterns.  相似文献   

13.
Weed invasions are an increasing threat to the extensive wetlands of the Northern Territory's wet-dry tropics. Although the conservation value of these wetlands is in some ways undisputed, it is evident from the Government's multiple land use policy that it is also misunderstood. This policy aims to maximise economic returns from wetlands while protecting their ecological integrity at a time when ecological and economic costs associated with weeds are, at least in the short term, set to worsen. The underlying reasons behind wetland loss and degradation in Australia parallel those identified in Mediterranean Europe where there was antipathy from bureaucracies toward science and ecology. Several case studies from the Northern Territory explore how ecological, anthropogenic, political and economic factors contribute to weed problems. Caution is necessary when translating experience from agricultural weeds to environmental weeds. Managers have not always heeded the advice of specialists and practitioners, whose understanding of the ecological basis to weed invasions is not in as parlous a state as sometimes thought. Even when faced with sound information from which to manage, it was non-ecological reasons that slowed down or prevented effective weed control. If the floristic identity and diversity of Australia's natural wetlands is to be retained, then weeds need serious and immediate attention. Weed impacts progress beyond loss of wetland habitat and biodiversity to regional changes in landscape processes. We advocate that governments and industry recognise and address the underlying non-ecological reasons that exacerbate weed problems and set priorities to fund relevant practical studies and control programs that enable inventive weed management. Cooperation between land users, custodians and the wider community can help to overcome bureaucratic obstacles and enable judicious weed control that contributes effectively to wetland protection.  相似文献   

14.
Ellis  J.I.  Schneider  D.C.  Thrush  S.F. 《Hydrobiologia》2000,440(1-3):379-391
Demonstrating spatial or temporal gradients of effects on macrobenthic communities can be a useful way of providing strong empirical evidence of natural or anthropogenic disturbance. Gradient designs for environmental assessment are sensitive to change for point source data, enabling the scale of the effects of a disturbance to be readily identified. If the spatial scale that is sampled from the point source is adequate, problems of selecting control sites can be avoided. However, sources of spatial variation in macrobenthic communities, which are not related to the impact, can confound the use of gradient designs. This can occur if the natural spatial structure overlaps that of the gradient and cannot be identified either as a location or environmental covariable. The ability to detect point source impacts using a gradient design against natural spatial variability was tested using benthic macrofaunal data collected from Manukau Harbour, New Zealand. Treated sewage wastewater is discharged into the north-west area of the Manukau Harbour. Sandflats in the vicinity of the outfall are also subject to physical disturbance from wind-waves and strong tides. Ordination techniques and the testing of a priori predictions were used to try and separate the relative effects of organic and physical disturbance on the benthic communities. While the occurrence of other environmental disturbances along a gradient of anthropogenic disturbance makes interpretation of community pattern more difficult, the use of a gradient sampling layout, ordination analysis and the testing of a priori predictions enabled impacts of the anthropogenic and natural environmental disturbances to be interpreted. Gradient designs, therefore, provide a method of assessing complex impacts that operate over broad spatial and temporal scales.  相似文献   

15.
The study of the developmental stability in natural populations is a promising direction of population developmental biology, which opens new possibilities for estimation of the nature of the observed phenotypic diversity and understanding the mechanisms of population dynamics and microevolutionary transformations. This direction of the studies allows one to approach the estimation of the condition of natural populations. A special analysis of possible changes in the developmental stability indicators under different anthropogenic effects allows one to characterize this approach as one of the main within the methodology of the health of environment estimation based on the organism condition characteristics by the developmental homeostasis. The approach seems promising for the estimation and monitoring of the condition of natural populations of different species as well as for the environmental quality estimation.  相似文献   

16.
Ecosystems that provide environmental opportunities but are poor in species and functional richness generally support speciation as well as invasion processes. These processes are expected not to be equally effective along elevational gradients due to specific ecological, spatial, and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients. We assess the vascular plant species richness as well as the number and percentage of endemic species and non‐native species systematically along three elevational gradients covering large parts of the climatic range of La Palma, Canary Islands. Species richness was negatively correlated with elevation, while the percentage of Canary endemic species showed a positive relationship. However, the percentage of Canary–Madeira endemics did not show a relationship with elevation. Non‐native species richness (indicating invasion) peaked at 500 m elevation and showed a consistent decline until about 1,200 m elevation. Above that limit, no non‐native species were present in the studied elevational gradients. Ecological, anthropogenic, and spatial filters control richness, diversification, and invasion with elevation. With increase in elevation, richness decreases due to species–area relationships. Ecological limitations of native ruderal species related to anthropogenic pressure are in line with the absence of non‐native species from high elevations indicating directional ecological filtering. Increase in ecological isolation with elevation drives diversification and thus increased percentages of Canary endemics. The best preserved eastern transect, including mature laurel forests, is an exception. The high percentage of Canary–Madeira endemics indicates the cloud forest's environmental uniqueness—and thus ecological isolation—beyond the Macaronesian islands.  相似文献   

17.
Macroalgae are unavoidable biological elements when monitoring and assessing costal environments. However, these tasks can be difficult to address because macroalgae a) present a high natural variability across a range of spatial and temporal scales, b) they imply a high sampling and laboratory processing effort and good taxonomical expertise (as they are a very diverse group of species), and c) there is insufficient knowledge about their structural and functional characteristics. This work addressed how the vertical (intertidal zonation) and horizontal (latitudinal gradient) variability of macroalgae assemblages are structured across continental Portugal, as well as how some surrogates for species-level biodiversity measures (namely functional groups and thallus morphology approaches) respond to such large-scale variability. Particularly, it was tested if intertidal zonation patterns are higher than fine-scale horizontal variation, and however, if vertical variation decreases along broad-scale horizontal variation. To do so, cover per species was taken (using a photographical and GIS methodological approach) from five sites located along the shoreline and along respective upper- mid- and lower-intertidal zones. The work findings include that both intertidal and latitudinal gradients impose deep structural changes on assemblages patterns. That is, broad-scale processes along Portuguese latitudes act as strongly as vertical stress gradients on assemblages patterns. Functional groups and thallus morphology approaches were useful to generalize the latitudinal assemblages patterns, where some groups emerge at the expense of others, and may improve biodiversity understanding and ecological synthesis. Because these surrogates decrease taxonomical expertise needs and can provide insight into the functional structure of macroalgal communities, their patterns founded may be particularly useful as reference data for further monitoring, so that shifts in such patterns might represent early warning surrogate approaches to detect environmental impact changes. Ultimately, to generate broader databases on rocky shore assemblages diversity (from species-level to functional groups and thallus morphologies approaches) can be useful for large-scale comparisons and for establishing ecological reference conditions, including for monitoring programs and environmental impact studies.  相似文献   

18.
The definition of vegetation types at different hierarchical levels, both to study the vegetation processes and for practical cartographic representation, is still considered a critical issue in many circles of plant ecologists. The problems are mainly related to the misleading idea that classification of the vegetation system, as developed by European phytosociologists during the last century within the discipline called syntaxonomy, would imply the assumption of the organismic concept of the plant community. After a short discussion on the role of Braun-Blanquet approach in plant ecology and in landscape ecology, the methods to detect multispecies responses along environmental gradients are briefly reviewed. In the main part of this article, we intend to stress that concepts considered critical, such as plant association and its ecological niche, are just operational tools that have nothing to do with the individualistic or organismic interpretation of plant communities in vegetation studies. Important to our views on vegetation, we believe that plant associations as well as the higher syntaxa can be regarded as fuzzy sets in an operational context for describing vegetation along ecological gradients in synthetic ways and can further the understanding of vegetation variation.  相似文献   

19.
Remote alpine regions were considered to be largely unimpacted by anthropogenic disturbance, but it is now clear these areas are changing rapidly. It is often difficult to identify the causal processes underpinning ecological change because the main drivers (direct and indirect climate forcing, land use change and atmospheric deposition) are acting simultaneously. In addition, alpine landscapes are morphometrically complex with strong local environmental gradients creating natural heterogeneity which acts as a variable filter to climate and anthropogenic forcing, emphasizing the need for analyzing responses at multiple sites. The eastern margin of Tibet is a hotspot of global biodiversity and is affected by both atmospheric N and dust deposition, whereas regional climate warming is comparatively recent. Here we use 210Pb and 137Cs dated sediment records from nine alpine lakes, and statistical measures of diatom ecological change (turnover and PCA axis 1 scores) to determine regional scale patterns in community response to global environmental change forcing over approximately the last 150 years. The study lakes showed contrasting ecological responses with increased nutrient input as the primary driver of change, mediated by lake morphology and catchment characteristics. Turnover rates of diatom composition, although low, are significantly associated with lake volume, lake area, altitude and DOC.  相似文献   

20.
Understorey plant communities play a key role in the functioning of forest ecosystems. Under favourable environmental conditions, competitive understorey species may develop high abundances and influence important ecosystem processes such as tree regeneration. Thus, understanding and predicting the response of competitive understorey species as a function of changing environmental conditions is important for forest managers. In the absence of sufficient temporal data to quantify actual vegetation changes, space-for-time (SFT) substitution is often used, i.e. studies that use environmental gradients across space to infer vegetation responses to environmental change over time. Here we assess the validity of such SFT approaches and analysed 36 resurvey studies from ancient forests with low levels of recent disturbances across temperate Europe to assess how six competitive understorey plant species respond to gradients of overstorey cover, soil conditions, atmospheric N deposition and climatic conditions over space and time. The combination of historical and contemporary surveys allows (i) to test if observed contemporary patterns across space are consistent at the time of the historical survey, and, crucially, (ii) to assess whether changes in abundance over time given recorded environmental change match expectations from patterns recorded along environmental gradients in space. We found consistent spatial relationships at the two periods: local variation in soil variables and overstorey cover were the best predictors of individual species’ cover while interregional variation in coarse-scale variables, i.e. N deposition and climate, was less important. However, we found that our SFT approach could not accurately explain the large variation in abundance changes over time. We thus recommend to be cautious when using SFT substitution to infer species responses to temporal changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号