首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxorubicin (Adriamycin) is the most active drug in the treatment of breast cancer. The aim of this study was to investigate the interaction of doxorubicin and retinoids in the inhibition of proliferation of hormone sensitive (ER+) human breast cancer cell line MCF-7 and to find out whether this combination can result in the enhancement of its therapeutic effect. As a comparison we also used estradiol and tamoxifen. We also made an attempt to elucidate the effect of these compounds on the stimulation of the apoptotic pathway in breast cancer cells. Cell proliferation in a 24-hour culture was assessed by [3H] thymidine incorporation into cancer cells and by immunocytochemical analysis of cellular cycle-related PCNA and Ki-67 antigens expression, after the incubation of the cell culture with 10, 20 and 50 nM doxorubicin (DOX), 2 nM estradiol (E2), 10 microM tamoxifen (TAM) and 1 nM, 0.01, 0.1, 1 and 10 microM of all-trans retinoid acid (ATRA). The assessment of cell viability and analysis of apoptotic and necrotic cells were performed after the 72-hour incubation of the culture with the examined substances and following apoptosis induction using acridine orange and ethidine bromide. Of the doxorubicin concentrations used in the study, 20 nM inhibited thymidine incorporation to 84.83 +/- 10.00% (control=100%). In the same culture conditions, 2 nM E2 stimulated cancer cells to 157.09 +/- 8.84%. Concentrations of 10 microM TAM and 10 microM ATRA inhibited the proliferation to 63.16 +/- 7.85% and 52.19 +/- 3.21%, respectively. A statistically significant reduction of these values was observed when 20 nM DOX was added to medium with E2 - 39.24 +/- 7.6%, TAM - 48.34 +/- 2.05% and ATRA - 21.98 +/- 1.69%, respectively; the percentage of PCNA- and Ki-67-positive cells was also reduced. Despite high antiproliferative efficacy of 20 nM DOX and 10 microM ATRA combination, the percentage of apoptotic cells was only 25 +/- 0.81%, being similar to that obtained in the culture with 20 nM DOX. The concentrations of 10, 20 and 50 nM DOX that were used to inhibit the proliferation of MCF-7 cell line were not particulary effective. The inhibitory effect was obtained when 20 nM of DOX and E2, TAM or ATRA were used simultaneously. The use of E2 caused a two-fold decrease in the percentage of proliferating cells. It was also shown that the effectiveness of DOX in combination with ATRA is significantly higher than that of DOX combined with TAM, which might suggest a valuable approach to the treatment of breast cancer.  相似文献   

2.
Endocrine therapy is widely accepted for the treatment of hormone receptor-positive breast cancer. However, in many cases eventually resistance will develop and tumor regrows. Combination therapy may be one way to resolve this problem. In the present study we investigated the effect of a combination of the widely used antiestrogen tamoxifen with the endogenous estradiol metabolite 2-methoxyestradiol (2-ME) on the proliferation of human estrogen receptor-positive and receptor-negative breast cancer cells.The receptor-positive cell line MCF-7 and the receptor-negative cell line BM were treated with 4-hydroxytamoxifen (4-OHTam) and 2-methoxyestradiol in the concentration range of 0.8-25 microM alone and equimolar combinations for 4 days. The proliferation of the cells was determined using the ATP-chemosensitivity test.4-Hydroxytamoxifen inhibited proliferation of MCF-7 and BM cells with IC(50) values of 31 and 10 microM, the corresponding figures for 2-methoxyestradiol were 52 and 8 microM. The combination showed IC(50) values of 6 microM and 4 microM.These results indicate that a combination of tamoxifen with 2-methoxyestradiol showed an additive inhibitory effect concerning the proliferation of estrogen receptor-positive and receptor-negative breast cancer cell lines. Thus a combination of these substances may allow ameliorating of adverse events of tamoxifen by reducing its concentrations and probably also drug resistance and should be tested in clinical trials.  相似文献   

3.
4.
The preparation of a series of novel analogues of the selective antiestrogen tamoxifen is reported. 1Z-alkoxyphenyl group in tamoxifen has been replaced by a N-alkoxypyrazole, while functionalised phenyl groups or heteroaromatics were introduced at the 2Z-position using sequential Suzuki cross coupling of 1,2-(bis)borylpinacol 1-phenylbutene with 4- or 5-iodo-1-N,N-dimethylaminoethyl or propyl-pyrazoles. Approximately 50 tamoxifen analogues were obtained and tested in an estrogen receptor (ERalpha) affinity assay. Several compounds exhibited binding affinities 2-5-fold lower than tamoxifen. Dose-response experiments with six selected compounds were carried out using two different human breast cancer cell lines, MCF-7 and the tamoxifen resistant cell line MCF-/TAM(R)-1. Both cell lines exhibited growth inhibition upon treatment with the tamoxifen analogues. Co-treatment of the cells, with estradiol and the individual compounds, were also performed. The results indicated that the observed growth inhibitory effect was mediated by the ERalpha. Analogues of the potent antiestrogen 4-hydroxytamoxifen (4-OHT) were synthesised where the 1E-4-hydroxyphenyl was replaced by a 1-hydroxypyrazol-4-yl group. However, modest growth inhibition of MCF-7 cells was observed upon treatment with these analogues. In contrast, 1Z-, 2Z-ringclosed tamoxifen analogue (59) was shown to possess antiproliferative effects on MCF-7 and MCF-/TAM(R)-1 cells in lower doses than tamoxifen.  相似文献   

5.
The anti-estrogenic substance tamoxifen is effective in the adjuvant therapy applied in human breast cancer. Since it partly exhibits estrogenic activity and has serious side-effects, however, pure anti-estrogenic compounds are being sought. In our experimental study, we compared the anti-proliferative effect of estradiol and 13 endogenous estradiol metabolites on human breast cancer cells with the effect of tamoxifen. We used MCF-7 and MDA-MB 231, the well-established estrogen receptor-positive and -negative cell lines. 4-hydroxytamoxifen, the active metabolite of tamoxifen, estradiol and 13 estradiol metabolites were tested in concentrations ranging from 3.1 to 100 microM. Incubation time was 4 days and cell proliferation was measured by means of the ATP chemosensitivity test. 4-hydroxytamoxifen showed an IC50 value of 27 microM and 18 microM in MCF-7 and MDA-MB 231 cells, respectively. Estradiol and its metabolites were anti-proliferative in both cell lines. A few A-ring metabolites were more effective in inhibiting cell proliferation than D-ring metabolites and the parent substance 17beta-estradiol. 4-OHE1, 2-MeOE1 and 2-MeOE2 were as effective in both cell lines as tamoxifen. For the first time it has been demonstrated that endogenous estradiol metabolites are equally anti-proliferative as tamoxifen in the context of human breast cancer cells. Since some of these metabolites exhibit no estrogenic activity, they are likely to be valuable in clinical studies of chemoprevention and adjuvant therapy of breast cancer.  相似文献   

6.
目的:建立耐三苯氧胺(TAM)人乳腺癌的裸鼠移植瘤模型,为研究和治疗乳腺癌对TAM耐药提供研究工具。方法:采用雌激素受体阳性,对TAM耐药的人乳腺癌细胞系LCC2,接种于BALB/c裸鼠皮下,观察肿瘤生长趋势,用免疫组化方法进行鉴定。结果:在接种细胞数大于5×106/只时,Matrigel能够显著促进移植瘤的生长。肿瘤组织病理学检测证实为浸润性导管癌,且Pgp和Her-2为阳性表达。结论:该方法建立的耐TAM人乳腺癌移植瘤模型,周期短,成瘤率高,保留了与细胞系相同的肿瘤生物学特征。  相似文献   

7.
8.
Insulin receptor substrate 1 (IRS-1) is a major downstream signaling protein for insulin and insulin-like growth factor I (IGF-I) receptors, conveying signals to PI-3K/Akt and ERK1/2 pathways. In breast cancer, IRS-1 overexpression has been associated with tumor development, hormone-independence and antiestrogen-resistance. In part, these effects are related to potentiation of IRS-1/PI-3K/Akt signaling. In estrogen sensitive breast cancer cell lines, tamoxifen treatment reduces IRS-1 expression and function; consequently, inhibiting IRS-1/PI-3K signaling. We tested whether anti-IRS1 siRNA could inhibit growth and survival of estrogen-sensitive MCF-7 breast cancer cells, when used alone or in combination with TAM. Our results indicated: (a) out of four tested anti-IRS1 siRNAs, two siRNAs reduced IRS-1 protein by approximately three-fold in both growing and IGF-I-stimulated cells without affecting a closely related protein, IRS-2; (b) these effects paralleled IRS1 mRNA downregulation by approximately three-fold, measured by quantitative real time-polymerase chain reaction; (c) action of anti-IRS1 siRNAs induced the apoptotic response, observed by altered mitochondrial membrane potential coupled with downregulation of NF-kappaB target Bcl-xL and reduced cell viability; (d) anti-IRS1 siRNA treatment enhanced the cytotoxic effects of TAM by approximately 20%. In summary, anti-IRS1 RNAi strategy could become a potent tool to induce breast cancer cell death, especially if combined with standard TAM therapy.  相似文献   

9.
We report here that the antiestrogen tamoxifen (TAM) induces cell death in human breast cancer cell line MCF-7. We assessed the type of cell death induced by TAM in this breast cancer cell line on the basis of morphological and biochemical characteristics. Dying cells showed morphological characteristics of apoptosis, such as chromatin condensation and nuclear disintegration. DNA isolated from these cells revealed a pattern of distinctive DNA bands on agarose gel. The DNA fragmentation in MCF-7 cells induced by TAM could also be detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling. Northern blot hybridization revealed a substantial increase in the amounts of TRPM-2 and TGF-β1 mRNAs in MCF-7 cells after treatment with TAM. In contrast, the mRNA level of the estrogen-induced pS2 gene was strongly suppressed. The biological activity of TGF-β was increased at least fourfold in the media from MCF-7 cells treated with TAM. The results presented in this study suggest that TAM induces apoptosis of MCF-7 cells and it may be mediated by the secretion of active TGF-β. © 1996 Wiley-Liss, Inc.  相似文献   

10.
目的:比较P-gp和MDR1在人乳腺癌敏感细胞(MCF-7/S)和耐药细胞(MCF-7/ADR、MCF-7/TAM)中的表达差异,初步探讨乳腺癌细胞对阿霉素与对三苯氧胺产生耐药机制的区别。方法:采用免疫细胞化学法、流式细胞术检测P-gp,采用实时荧光定量PCR法检测MDR1在三种乳腺癌细胞中的表达情况。结果:在MCF-7/ADR细胞中P-gp和MDR1均呈高表达,阳性表达率与MCF-7/S细胞比较,有统计学意义(P<0.01)。在MCF-7/TAM细胞中P-gp、MDR1均呈低表达,与MCF-7/S细胞比较,无统计学意义(P>0.05)。结论:P-gp和MDR1的高表达是乳腺癌细胞对阿霉素产生耐药的主要机制,而并非是乳腺癌细胞对三苯氧胺产生耐药的机制。  相似文献   

11.
12.
Tamoxifen is a first‐line drug for hormone therapy (HT) in oestrogen receptor‐positive breast cancer patients. However, 20% to 30% of those patients are resistant to tamoxifen treatment. Cancer stem cells (CSCs) have been implicated as one of the mechanisms responsible for tamoxifen resistance. Our previous study indicated that decreased expression of the CRB3 gene confers stem cell characteristics to breast cancer cells. In the current investigation, we found that most of the breast cancer patient tissues resistant to tamoxifen were negative for CRB3 protein and positive for β‐catenin protein, in contrast to their matched primary tumours by immunohistochemical analysis. Furthermore, expression of CRB3 mRNA and protein was low, while expression of β‐catenin mRNA and protein was high in tamoxifen resistance cells (LCC2 and T47D TamR) contrast to their corresponding cell lines MCF7 and T47D. Similarly, CRB3 overexpression markedly restored the tamoxifen sensitivity of TamR cells by the MTT viability assay. Finally, we found that CRB3 suppressed the stemness of TamR cells by inhibiting β‐catenin signalling, which may in turn lead to a decrease in the breast cancer cell population. Furthermore, these findings indicate that CRB3 is an important regulator for breast cancer stemness, which is associated with tamoxifen resistance.  相似文献   

13.
The selective ER modulator tamoxifen (TAM(1)) is the most widely used ER antagonist for treatment of women with hormone-dependent breast tumor. However, long-term treatment is associated with an increased risk of endometrial cancer. The aim of the present study was to demonstrate new insight into the role of G-protein coupled receptor 30 (GPR30) in the activity of TAM, which promoted endometrial cancer. In endometrial cancer cell lines ISHIKAWA and KLE, the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, 17β-estradiol (E2) and G1, a non-steroidal GPR30-specific agonist to promote cell proliferation and invasion was evaluated. All agents above induced high proliferative and invasive effects, while the down-regulation of GPR30 or the interruption of MAPK signal pathway partly or completely prevented the action of the regent. Moreover, the RNA and protein expression of GPR30 was up-regulated by G1, E2 or OHT in both cell lines. The present study provided a new insight into the mechanism involved in the agonistic activity exerted by TAM in the uterus.  相似文献   

14.
We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens.  相似文献   

15.
We have shown that low doses of medroxyprogesterone acetate (MPA- 2.6 microM) and tamoxifen (TAM- 270 nM) could augment the effectiveness of epirubicin in breast tumor cells. In this study, we monitored early cell kinetics (24-96 h plating and S-phase) and mitochondrial morphology during chemo-endocrine treatments to delineate the epirubicin sensitizing mechanism. S-phase fractions with radioactive thymidine uptake, plating efficacy, and transmission electron microscopic analysis were taken for 24-h periods until the 7th day after drug treatments. Despite strongly enhancing the clonogenic killing, both MPA and TAM did not affect epirubicin induced early cytotoxicity. Instead, they augmented the S-phase inhibition, which was even more pronounced for TAM. Epirubicin induced prominent swelling and crista damage of mitochondria and fragmentation of nuclei. Mitochondria were a normal size during a combination of epirubicin with either MPA- or tamoxifen treatment, despite the persistence of chromatin fragmentation and strong synergism on the clonogenic killing of breast tumor cells. Low dosage endocrine agent-induced anthracycline sensitization may be independent of mitochondrial toxicity. Further studies would be worthwhile, since the uncoupling of mitochondrial toxicity from the anti-neoplastic effect may also mean obviated cardiac toxicity in clinic.  相似文献   

16.
目的:建立耐三苯氧胺(TAM)人乳腺癌的裸鼠移植瘤模型,为研究和治疗乳腺癌对TAM耐药提供研究工具。方法:采用雌激素受体阳性,对TAM耐药的人乳腺癌细胞系LCC2,接种于BALB/c裸鼠皮下,观察肿瘤生长趋势,用免疫组化方法进行鉴定。结果:在接种细胞数大于5×106/只时,Matrigel能够显著促进移植瘤的生长。肿瘤组织病理学检测证实为浸润性导管癌,且Pgp和Her-2为阳性表达。结论:该方法建立的耐TAM人乳腺癌移植瘤模型,周期短,成瘤率高,保留了与细胞系相同的肿瘤生物学特征。  相似文献   

17.
Choline kinase-α (Chk-α) and autophagy have gained much attention, as they relate to the drug-resistance of breast cancer. Here, we explored the potential connection between Chk-α and autophagy in the mechanisms driving to tamoxifen (TAM) resistance, in estrogen receptor positive (ER+) breast cancer cells (BCCs). Human BCC lines (MCF-7 and TAM-resistant MCF-7 (MCF-7/TAM) cells) were used. Chk-α expression and activity was suppressed by the transduction of shRNA (shChk-α) with lentivirus and treatment with CK37, a Chk-α inhibitor. MCF-7/TAM cells had higher Chk-α expression and phosphocholine levels than MCF-7 cells. A specific downregulation of Chk-α by the transduction of shChk-α exhibited a significant decrease in phosphocholine levels in MCF-7 and MCF-7/TAM cells. The autophagy-related protein, cleaved microtubule-associated protein light chain 3 (LC3) and autophagosome-like structures were significantly increased in shChk-α-transduced or CK37-treated MCF-7 and MCF-7/TAM cells. The downregulation of Chk-α attenuated the phosphorylation of AKT, ERK1/2, and mTOR in both MCF-7 and MCF-7/TAM cells. In MCF-7 cells, the downregulation of Chk-α resulted in an induction of autophagy, a decreased proliferation ability and an activation of caspase-3. In MCF-7/TAM cells, despite a significant decrease in proliferation ability and an increase in the percentage of cells in the G0/G1 phase of the cell cycle, the downregulation of Chk-α did not induced caspase-dependent cell death and further enhanced autophagy and G0/G1 phase arrest. An autophagy inhibitor, methyladenine (3-MA) induced death and attenuated the level of elevated LC3 in MCF-7/TAM cells. Elucidating the interplay between choline metabolism and autophagy will provide unique opportunities to identify new therapeutic targets and develop novel treatment strategies that preferentially target TAM-resistance.  相似文献   

18.
Modulation of oxidative stress in cancer cells plays an important role in the study of the resistance to anticancer therapies. Uncoupling protein 2 (UCP2) may play a dual role in cancer, acting as a protective mechanism in normal cells, while its overexpression in cancer cells could confer resistance to chemotherapy and a higher survival through downregulation of ROS production. Thus, our aim was to check whether the inhibition of UCP2 expression and function increases oxidative stress and could render breast cancer cells more sensitive to cisplatin (CDDP) or tamoxifen (TAM). For this purpose, we studied clonogenicity, mitochondrial membrane potential (ΔΨm), cell viability, ROS production, apoptosis, and autophagy in MCF-7 and T47D (only the last four determinations) breast cancer cells treated with CDDP or TAM, in combination or without a UCP2 knockdown (siRNA or genipin). Furthermore, survival curves were performed in order to check the impact of UCP2 expression in breast cancer patients. UCP2 inhibition and cytotoxic treatments produced a decrease in cell viability and clonogenicity, in addition to an increase in ΔΨm, ROS production, apoptosis, and autophagy. It is important to note that CDDP decreased UCP2 protein levels, so that the greatest effects produced by the UCP2 inhibition in combination with a cytotoxic treatment, with regard to treatment alone, were observed in TAM+UCP2siRNA-treated cells. Moreover, this UCP2 inhibition caused autophagic cell death, since apoptosis parameters barely increased after UCP2 knockdown. Finally, survival curves revealed that higher UCP2 expression corresponded with a poorer prognosis. In conclusion, UCP2 could be a therapeutic target in breast cancer, especially in those patients treated with tamoxifen.  相似文献   

19.
Estrogen-noncompatible antiestrogen binding sites (AEBS) as well as estrogen receptors (ER), and the growth-inhibitory effect of tamoxifen were investigated in two human endometrial cancer cell lines, IK-90 and HEC-IA cells. IK-90 cells contained specific AEBS, but no ER was found in these cells. Scatchard plot analysis of AEBS in 12,000 g supernatant from IK-90 cells showed a high affinity binding site for tamoxifen (Kd:5.6 +/- 1.0 nM) with the maximum binding site of 457 +/- 47 fmol/mg protein. However, no measurable ER or AEBS was found in HEC-IA cells. The effect of tamoxifen on the growth of cells was found to be identical in both cell lines; the addition of 10 microM tamoxifen to culture medium was cytocidal whereas tamoxifen at lower concentrations (1 nM-1 microM) did not significantly affect the growth of both IK-90 and HEC-IA cells. These results demonstrate for the first time the presence of AEBS in human endometrial cancer cells. The present results also suggest that AEBS does not play a fundamental role in mediating the growth-inhibitory effect of tamoxifen in endometrial cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号