首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reading two bases twice: mammalian antizyme frameshifting in yeast.   总被引:9,自引:1,他引:8       下载免费PDF全文
Programmed translational frameshifting is essential for the expression of mammalian ornithine decarboxylase antizyme, a protein involved in the regulation of intracellular polyamines. A cassette containing antizyme frameshift signals is found to direct high-level (16%) frameshifting in yeast, Saccharomyces cerevisiae. In contrast to +1 frameshifting in the mammalian system, in yeast the same frame is reached by -2 frameshifting. Two bases are read twice. The -2 frameshifting is likely to be mediated by slippage of mRNA and re-pairing with the tRNA in the P-site. The downstream pseudoknot stimulates frameshifting by 30-fold compared with 2.5-fold in reticulocyte lysates. When the length of the spacer between the shift site and the pseudoknot is extended by three nucleotides, +1 and -2 frameshifting become equal.  相似文献   

2.
3.
How translational accuracy influences reading frame maintenance   总被引:6,自引:0,他引:6       下载免费PDF全文
Most missense errors have little effect on protein function, since they only exchange one amino acid for another. However, processivity errors, frameshifting or premature termination result in a synthesis of an incomplete peptide. There may be a connection between missense and processivity errors, since processivity errors now appear to result from a second error occurring after recruitment of an errant aminoacyl-tRNA, either spontaneous dissociation causing premature termination or translational frameshifting. This is clearest in programmed translational frameshifting where the mRNA programs errant reading by a near-cognate tRNA; this error promotes a second frameshifting error (a dual-error model of frameshifting). The same mechanism can explain frameshifting by suppressor tRNAs, even those with expanded anticodon loops. The previous model that suppressor tRNAs induce quadruplet translocation now appears incorrect for most, and perhaps for all of them. We suggest that the 'spontaneous' tRNA-induced frameshifting and 'programmed' mRNA-induced frameshifting use the same mechanism, although the frequency of frameshifting is very different. This new model of frameshifting suggests that the tRNA is not acting as the yardstick to measure out the length of the translocation step. Rather, the translocation of 3 nucleotides may be an inherent feature of the ribosome.  相似文献   

4.
Hu J  Ng PC 《Genome biology》2012,13(2):R9-11
Each human has approximately 50 to 280 frameshifting indels, yet their implications are unknown. We created SIFT Indel, a prediction method for frameshifting indels that has 84% accuracy. The percentage of human frameshifting indels predicted to be gene-damaging is negatively correlated with allele frequency. We also show that although the first frameshifting indel in a gene causes loss of function, there is a tendency for the second frameshifting indel to compensate and restore protein function. SIFT Indel is available at http://sift-dna.org/www/SIFT_indels2.html.  相似文献   

5.
Analyses of frameshifting at UUU-pyrimidine sites.   总被引:5,自引:1,他引:4       下载免费PDF全文
Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage.  相似文献   

6.
RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3′ direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) −1 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate−1 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for−1 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing−1 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study’s findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation.  相似文献   

7.
It is generally believed that significant ribosomal frameshifting during translation does not occur without a functional purpose. The distribution of two frameshift-prone sequences, A_AAA_AAG and CCC_TGA, in coding regions of Escherichia coli has been analyzed. Although a moderate level of selection against the first sequence is evident, 68 genes contain A_AAA_AAG and 19 contain CCC_TGA. The majority of those tested in their genomic context showed >1% frameshifting. Comparative sequence analysis was employed to assess a potential biological role for frameshifting in decoding these genes. Two new candidates, in pheL and ydaY, for utilized frameshifting have been identified in addition to those previously known in dnaX and nine insertion sequence elements. For the majority of the shift-prone sequences no functional role can be attributed to them, and the frameshifting is likely erroneous. However, none of frameshift sequences is in the 306 most highly expressed genes. The unexpected conclusion is that moderate frameshifting during expression of at least some other genes is not sufficiently harmful for cells to trigger strong negative evolutionary pressure.  相似文献   

8.
Programmed ribosomal frameshifting allows the synthesis of alternative, N-terminally coincident, C-terminally distinct proteins from the same RNA. Many viruses utilize frameshifting to optimize the coding potential of compact genomes, to circumvent the host cell's canonical rule of one functional protein per mRNA, or to express alternative proteins in a fixed ratio. Programmed frameshifting is also used in the decoding of a small number of cellular genes. Recently, specific ribosomal − 1 frameshifting was discovered at a conserved U_UUU_UUA motif within the sequence encoding the alphavirus 6K protein. In this case, frameshifting results in the synthesis of an additional protein, termed TF (TransFrame). This new case of frameshifting is unusual in that the − 1 frame ORF is very short and completely embedded within the sequence encoding the overlapping polyprotein.The present work shows that there is remarkable diversity in the 3′ sequences that are functionally important for efficient frameshifting at the U_UUU_UUA motif. While many alphavirus species utilize a 3′ RNA structure such as a hairpin or pseudoknot, some species (such as Semliki Forest virus) apparently lack any intra-mRNA stimulatory structure, yet just 20 nt 3′-adjacent to the shift site stimulates up to 10% frameshifting. The analysis, both experimental and bioinformatic, significantly expands the known repertoire of − 1 frameshifting stimulators in mammalian and insect systems.  相似文献   

9.
Chen C  Montelaro RC 《Journal of virology》2003,77(19):10280-10287
Synthesis of Gag-Pol polyproteins of retroviruses requires ribosomes to shift translational reading frame once or twice in a -1 direction to read through the stop codon in the gag reading frame. It is generally believed that a slippery sequence and a downstream RNA structure are required for the programmed -1 ribosomal frameshifting. However, the mechanism regulating the Gag-Pol frameshifting remains poorly understood. In this report, we have defined specific mRNA elements required for sufficient ribosomal frameshifting in equine anemia infectious virus (EIAV) by using full-length provirus replication and Gag/Gag-Pol expression systems. The results of these studies revealed that frameshifting efficiency and viral replication were dependent on a characteristic slippery sequence, a five-base-paired GC stretch, and a pseudoknot structure. Heterologous slippery sequences from human immunodeficiency virus type 1 and visna virus were able to substitute for the EIAV slippery sequence in supporting EIAV replication. Disruption of the GC-paired stretch abolished the frameshifting required for viral replication, and disruption of the pseudoknot reduced the frameshifting efficiency by 60%. Our data indicated that maintenance of the essential RNA signals (slippery sequences and structural elements) in this region of the genomic mRNA was critical for sufficient ribosomal frameshifting and EIAV replication, while concomitant alterations in the amino acids translated from the same region of the mRNA could be tolerated during replication. The data further indicated that proviral mutations that reduced frameshifting efficiency by as much as 50% continued to sustain viral replication and that greater reductions in frameshifting efficiency lead to replication defects. These studies define for the first time the RNA sequence and structural determinants of Gag-Pol frameshifting necessary for EIAV replication, reveal novel aspects relative to frameshifting elements described for other retroviruses, and provide new genetic determinants that can be evaluated as potential antiviral targets.  相似文献   

10.
K Vgele  E Schwartz  C Welz  E Schiltz    B Rak 《Nucleic acids research》1991,19(16):4377-4385
IS150 contains two tandem, out-of-phase, overlapping genes, ins150A and ins150B, which are controlled by the same promoter. These genes encode proteins of 19 and 31 kD, respectively. A third protein of 49 kD is a transframe gene product consisting of domains encoded by both genes. Specific -1 ribosomal frameshifting is responsible for the synthesis of the large protein. Expression of ins150B also involves frameshifting. The IS150 frameshifting signals operate with a remarkably high efficiency, causing about one third of the ribosomes to switch frame. All of the signals required for this process are encoded in a 83-bp segment of the element. The heptanucleotide A AAA AAG and a potential stem-loop-forming sequence mark the frameshifting site. Similar sequence elements are found in -1 frameshifting regions of bacterial and retroviral genes. A mutation within the stem-loop sequence reduces the rate of frameshifting by about 80%. Artificial transposons carrying this mutation transpose at a normal frequency, but form cointegrates at a approximately 100-fold reduced rate.  相似文献   

11.
Several viruses utilize programmed ribosomal frameshifting mediated by mRNA pseudoknots in combination with a slippery sequence to produce a well defined stochiometric ratio of the upstream encoded to the downstream-encoded protein. A correlation between the mechanical strength of mRNA pseudoknots and frameshifting efficiency has previously been found; however, the physical mechanism behind frameshifting still remains to be fully understood. In this study, we utilized synthetic sequences predicted to form mRNA pseudoknot-like structures. Surprisingly, the structures predicted to be strongest lead only to limited frameshifting. Two-dimensional gel electrophoresis of pulse labelled proteins revealed that a significant fraction of the ribosomes were frameshifted but unable to pass the pseudoknot-like structures. Hence, pseudoknots can act as ribosomal roadblocks, prohibiting a significant fraction of the frameshifted ribosomes from reaching the downstream stop codon. The stronger the pseudoknot the larger the frameshifting efficiency and the larger its roadblocking effect. The maximal amount of full-length frameshifted product is produced from a structure where those two effects are balanced. Taking ribosomal roadblocking into account is a prerequisite for formulating correct frameshifting hypotheses.  相似文献   

12.
D Sung  H Kang 《Nucleic acids research》1998,26(6):1369-1372
Mutational effects on frameshifting efficiency of the RNA pseudoknot involved in ribosomal frameshifting in simian retrovirus-1 (SRV-1) have been investigated. The primary sequence and the proposed secondary structure of the SRV-1 pseudoknot are similar to those of other efficient frameshifting pseudoknots in mouse mammary tumor virus (MMTV) and feline immunodeficiency virus (FIV), where an unpaired adenine nucleotide intercalates between stem 1 and stem 2. In SRV-1 pseudoknot, the adenine nucleotide in between stem 1 and stem 2 has a potential to form an A*U base pair with the last uridine nucleotide in the loop 2, resulting in a continuous A-form helix with coaxially stacked stem 1 and stem 2. To test whether this A*U base pairing and coaxial stacking of stem 1 and stem 2 is absolutely required for efficient frameshifting in SRV-1, a series of mutants changing this potential A.U base pair to either G.C base pair or A.A, A.G, A.C, G.A, G.G mismatch is generated, and their frameshifting efficiencies are investigated in vitro using rabbit reticulocyte lysate translation assay. The frameshifting abilities of these mutant pseudoknots are similar to that of the wild-type pseudoknot, suggesting that the A*U base pair in between stem 1 and stem 2 is not necessary to promote efficient frameshifting in SRV-1. These results reveal that coaxial stacking of stem 1 and stem 2 with a Watson-Crick A.U base pair in between two stems is not a required structural feature of the pseudoknot for promoting efficient frameshifting in SRV-1. Our mutational data suggest that SRV-1 pseudoknot adopts similar structural features common to other efficient frameshifting pseudoknots as observed in MMTV and FIV.  相似文献   

13.
14.
Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region   总被引:110,自引:0,他引:110  
T Jacks  H D Madhani  F R Masiarz  H E Varmus 《Cell》1988,55(3):447-458
  相似文献   

15.
Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem-loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro. Here we examined frameshifting at the U(6)A slippery sequence of the HIV gag/pol signal and found high levels of both -1 and -2 frameshifting with stem-loop, pseudoknot or antisense oligonucleotide stimulators. By examining -1 and -2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that -2 frameshifting was optimal at a spacer length 1-2 nucleotides shorter than that optimal for -1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the -2 frame on the U(6)A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem-loop, pseudoknot or antisense oligonucleotide stimulator.  相似文献   

16.
Certain viruses, transposons, and cellular genes have evolved specific sequences that induce high levels of specific translational errors. Such "programmed misreading" can result in levels of frameshifting or nonsense codon readthrough that are up to 1,000-fold higher than normal. Here we determine how a number of mutations in yeast affect the programmed misreading used by the yeast Ty retrotransposons. These mutations have previously been shown to affect the general accuracy of translational termination. We find that among four nonsense suppressor ribosomal mutations tested, one (a ribosomal protein mutation) enhanced the efficiency of the Tyl frameshifting, another (an rRNA mutation) reduced frameshifting, and two others (another ribosomal protein mutation and another rRNA mutation) had no effect. Three antisuppressor rRNA mutations all reduced Tyl frameshifting; however the antisuppressor mutation in the ribosomal protein did not show any effect. Among nonribosomal mutations, the allosuppressor protein phosphatase mutation enhanced Tyl frameshifting, whereas the partially inactive prion form of the release factor eRF3 caused a slight decrease, if any effect. A mutant form of the other release factor, eRF1, also had no effect on frameshifting. Our data suggest that Ty frameshifting is under the control of the cellular translational machinery. Surprisingly we find that translational suppressors can affect Ty frameshifting in either direction, whereas antisuppressors have either no effect or cause a decrease.  相似文献   

17.
The structures of four different RNA pseudoknots that provide one of the signals required for ribosomal frameshifting in mouse mammary tumor virus have been determined by NMR. The RNA pseudoknots have similar sequences and assume similar secondary structures, but show significantly different frameshifting efficiencies. The three-dimensional structures of one frameshifting and one non-frameshifting RNA pseudoknot had been determined previously by our group. Here we determine the structures of two new RNA pseudoknots, and relate the structures of all four pseudoknots to their frameshifting abilities. The two efficient frameshifting pseudoknots adopt characteristic bent conformations with stem 1 bending towards the major groove of stem 2. In contrast, the two poor frameshifting pseudoknots have structures very different from each other and from the efficient frameshifters. One has linear, coaxially stacked stems, the other has stems twisted and bent, but in the opposite direction to the efficient frameshifters. Changes in loop size that favor bending (shorter loops) increase frameshifting efficiency; longer loops that allow linear arrangement of the stems decrease frameshifting. Frameshifting pseudoknots in feline immunodeficiency virus and simian retrovirus have different loop sequences, but the sequences at their stem junctions imply the same bent conformation as in the mouse mammary tumor viral RNA. The requirement for a precise pseudoknot conformation for efficient frameshifting strongly implies that a specific interaction occurs between the viral RNA pseudoknot and the host protein-synthesizing machinery.  相似文献   

18.
编程性翻译移码现象存在于病毒、原核生物和真核生物中。单细胞真核生物游仆虫基因组中含有的编程性翻译移码基因远远高于其他真核生物基因组。游仆虫中已经报道的编程性翻译移码基因的滑动序列特征为AAA-UAR-V,其上游都有SD(Shine-Dalgarno sequence)相似序列CAAGAA。同时,编程性移码的发生受肽链释放因子eRF1和tRNALys的影响。  相似文献   

19.
Cao S  Chen SJ 《Physical biology》2008,5(1):016002
Many retroviruses use -1 ribosomal frameshifting as part of the mechanism in translational control of viral protein synthesis. Quantitative prediction of the efficiency of -1 frameshifting is crucial for understanding the viral gene expression. Here we investigate the free energy landscape for a minimal -1 programmed ribosomal frameshifting machinery, including the codon-anticodon base pairs at the slippery site, the downstream messenger RNA structure and the spacer between the slippery site and the downstream structure. The free energy landscape analysis leads to a quantitative relationship between the frameshifting efficiency and the tension force generated during the movement of codon-anticodon complexes, which may occur in the A/T to A/A accommodation process or the translocation process. The analysis shows no consistent correlation between frameshifting efficiency and global stability of the downstream mRNA structure.  相似文献   

20.
Genetic analysis of the E site during RF2 programmed frameshifting   总被引:4,自引:2,他引:2  
The roles of the ribosomal E site are not fully understood. Prior evidence suggests that deacyl-tRNA in the E site can prevent frameshifting. We hypothesized that if the E-site codon must dissociate from its tRNA to allow for frameshifting, then weak codon:anticodon duplexes should allow for greater frameshifting than stronger duplexes. Using the well-characterized Escherichia coli RF2 (prfB) programmed frameshift to study frameshifting, we mutagenized the E-site triplet to all Unn and Cnn codons. Those variants should represent a very wide range of duplex stability. Duplex stability was estimated using two different methods. Frameshifting is inversely correlated with stability, as estimated by either method. These findings indicate that pairing between the deacyl-tRNA and the E-site codon opposes frameshifting. We discuss the implications of these findings on frame maintenance and on the RF2 programmed frameshift mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号