首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tannoid principles of the fruits of the plant Emblica officinalis Gaertn comprising of emblicanin A. emblicanin B, punigluconin and pedunculagin, have been reported to exhibit antioxidant activity in vitro and in vivo. In the present study, an emblicanin A (37%) and B (33%) enriched fraction of fresh juice of Emblica fruits (EOT), administered prophylactically (10, 20 and 50 mg/kg, p.o.) for 10 consecutive day, was found to inhibit acute iron overload (30 mg/kg, i.p.) hepatic lipid peroxidation and the increase of serum levels of alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase, used as markers of the induced hepatic dysfunction. A similar effect was produced by silymarin (20 mg/kg, p.o.), an antioxidant hepatoprotective agent. The results support the use of Emblica fruits for hepatoprotection in Ayurveda.  相似文献   

2.
3.
4.
The protective effect of a fermented substance from Saccharomyces cerevisiae (FSSC) on liver injury caused by acetaminophen (AAP) was studied in mice. Mice were pretreated with FSSC (0.5–2.0 g/kg, p.o.) for 4 d, and on the fourth day, the mice received an overdose of AAP (500 mg/kg, i.p.). Subsequently, they were sacrificed at 7 h, and blood was drawn from the abdominal vein and liver samples were collected. Histological and biochemical examinations revealed that the administration of AAP caused liver injury in the mice, including increases in plasma alanine aminotransferase and asparate aminotransferase activities and decreases in the hepatic reduced form of glutathione (GSH) content and antioxidant enzyme activities. Prior to AAP treatment, the mice pretreated with FSSC showed significantly reduced levels of alanine aminotransferase (ALT) and aspirate aminotransferase (AST) activity. Liver histology in the FSSC-pretreated mice was significant. In these mice, pretreatment with FSSC also served to reduce hepatic GSH depletion and the inhibition of antioxidant enzyme activity caused by AAP overdose. In conclusion, oral administration of FSSC significantly reduced AAP-induced hepatic injury in the mice.  相似文献   

5.
In the present study, we investigated the hepatoprotective potential of Parinari curatellifolia Planch (Chrysobalanaceae) in experimental rats in order to ascertain the validity of folkloric claims of its effectiveness in the treatment of hepatic-related disorders. Flavonoid extract of P. curatellifolia seed, PCF (10-, 20- or 30 mg/kg body weight) or silymarin (25 mg/kg), dissolved in corn oil, was administered by gavage to experimental animals once daily for 14 consecutive days before liver damage was chemically induced through the administration of acetaminophen (2 g/kg p.o.) on the 14th day. Hepatoprotection was assessed by analyzing liver homogenate and serum for markers of hepatotoxicity – alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities as well as prothrombin time (PT). Evaluation of biochemical indices of oxidative stress – level of lipid peroxides (LPO), activities of superoxide dismutase (SOD) and catalase, along with histological assessment of hepatic tissue sections were also carried out. Results revealed that all doses of PCF significantly (P < 0.001) and dose dependently prevented acetaminophen-induced increase in serum activities of hepatic enzymes (ALT, AST, GGT, LDH) and PT. Furthermore, PCF (10- and 20 mg/kg) significantly (P < 0.001) reduced lipid peroxidation in liver tissue and restored the activities of the antioxidant enzymes SOD and catalase toward normal levels. Histopathology of the liver tissue showed that PCF mitigated the toxicant-induced hepatocellular necrosis, reduced inflammatory cell infiltration and enhanced hepatocyte regeneration. The results indicated that P. curatellifolia flavonoids demonstrated remarkable hepatoprotective activity in acute liver injury caused by acetaminophen.  相似文献   

6.
Prophylactic and therapeutic effects of acetylcarnitine against acetaminophen‐induced hepatotoxicity were studied in mice. To evaluate the prophylactic effects of acetylcarnitine, mice were supplemented with acetylcarnitine (2 mmol/kg/day per oral (p.o.) for 5 days) before a single dose of acetaminophen (350 mg/kg intraperitoneal (i.p.)). Animals were sacrificed 6 h after acetaminophen injection. Acetaminophen significantly increased the markers of liver injury, hepatic reactive oxygen species, and nitrate/nitrite, and decreased hepatic glutathione (GSH) and the antioxidant enzymes. Acetylcarnitine supplementation resulted in reversal of all biochemical parameters toward the control values. To explore the therapeutic effects of acetylcarnitine, mice were given a single dose of acetylcarnitine (0.5, 1, and 2 mmol/kg p.o.) 1.5 h after acetaminophen. Animals were sacrificed 6 h after acetaminophen. Acetylcarnitine administration resulted in partial reversal of liver injury only at 2 mmol/kg p.o. At equimolar doses, N‐acetylcystiene was superior as therapeutic agent to acetylcarnitine. However, acetylcarnitine potentiated the effect of N‐acetylcystiene in the treatment of acetaminophen toxicity.  相似文献   

7.
N-Acetylcysteine (NAC) is protective against acetaminophen-induced hepatotoxicity primarily by providing precursor for the glutathione synthetase pathway, while cysteamine has been demonstrated to alter the cytochrome P-450 dependent formation of toxic acetaminophen metabolite. Mice administered acetaminophen (500 mg/kg) had elevations of serum alanine aminotransferase (ALT) to 273.0 +/- 37.5 and 555.8 +/- 193.4 U/mL at 12 and 24 h, respectively, after injection. Administration of cysteamine (100 mg/kg) or NAC (500 mg/kg) significantly reduced serum ALT activity (p less than 0.001). Reducing the dose of NAC or cysteamine by 50% greatly reduced their hepatoprotective effect while the co-administration of the reduced doses of NAC (250 mg/kg) and cysteamine (50 mg/kg) following acetaminophen overdose prevented elevation of serum ALT activity (39.2 +/- 1.17 and 32.5 +/- 5.63 U/mL at 12 and 24 h post-injection, p less than 0.001) and preserved normal mouse hepatic histology. Neither NAC (500 mg/kg), cysteamine (100 mg/kg), or the lower doses in combination of both agents were found to alter the half-life or peak levels of acetaminophen. Liver microsomal aryl hydrocarbon hydroxylase activity measured 24 h after drug administration was not significantly different between treatment groups and controls receiving only saline. These results indicate a possible role for the concomitant use of NAC and cysteamine in the prevention of hepatic necrosis following toxic doses of acetaminophen. Neither decrease in plasma acetaminophen levels nor depression of cytochrome P-450 enzyme activity appears to be the mechanism of protection when these doses of NAC, cysteamine, or both drugs together are administered with a toxic dose of acetaminophen in mice.  相似文献   

8.
The protective effects of carvedilol, an antihypertensive agent, against oxidative injury caused by acetaminophen were studied in rat liver. Male Wistar rats (250 +/- 30 g) were pre-treated with carvedilol (3.6 mg/kg, p.o.) for 10 days and on the 11th day received an overdose of acetaminophen (800 mg/kg, p.o.). Four hours after acetaminophen administration, blood was collected to determine serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). After that, rats were killed and the livers were excised to determine reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and carbonyl protein contents, and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST), and also the DNA damage index. Acetaminophen significantly increased the levels of TBARS, the DNA damage and SOD, AST and ALT activities. Carvedilol was able to prevent lipid peroxidation, protein carbonilation and DNA fragmentation caused by acetaminophen. Moreover, this drug prevented increases in SOD, AST and ALT activities. These results show that carvedilol exerts cytoprotective effects against oxidative injury caused by acetaminophen in rat liver. These effects are probably related to the O2*- scavenging property of carvedilol or its metabolites.  相似文献   

9.
ABSTRACT

We investigated the potential hepatoprotective effects of misoprostol (MP) on doxorubicin (DOX) induced liver injury in rats using histology and biochemistry. We used 21 male Sprague-Dawley rats divided randomly into three groups: group 1, control; group 2, DOX; group 3, DOX + MP. The control group was injected intraperitoneally (i.p.) with 0.5 ml 0.9% w/v NaCl and given 1 ml 0.9% NaCl orally for 6 days. DOX was administered i.p. as a single dose of 20 mg/kg. MP, 0.2 mg/kg, was given orally for 6 days. Treatment with MP increased high density lipoprotein cholesterol levels and decreased serum alanine aminotransferase, aspartate aminotransferase, low density lipoprotein cholesterol, triglycerides and total cholesterol levels significantly in serum. Increased malondialdehyde level and decreased catalase, glutathione and superoxide dismutase levels caused by DOX were suppressed significantly in liver tissue by MP. DOX + MP reduced loss of body weight. Oxidative stress was decreased, antioxidant activity was increased and histopathological changes were reduced in the DOX + MP group compared to the DOX group. Liver injury caused by DOX was attenuated by MP treatment owing to the antioxidative and anti-apoptotic effects of MP, which might be useful for reducing the severity of DOX induced liver injury.  相似文献   

10.
From a pharmacological point of view, organoseleniums are compounds with important and interesting antioxidant and biological activities. The aim of this study was to evaluate the hepatoprotective effect of bis(4‐methylbenzoyl) diselenide (BMD) against carbon tetrachloride (CCl4)–induced oxidative damage in mice. The animals received BMD (25 mg/kg p.o., for 3 days), and after 1 day, CCl4 (1 mg/kg body weight) was administered by intraperitoneal route. One day after the CCl4 exposure, the animals were euthanized for biochemical and histological analysis. Treatment with BMD (25 mg/kg p.o.) protected against aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma‐glutamyl transferase and lactate dehydrogenase activity increases induced by CCl4 plasma exposure. Treatment with BMD (25 mg/kg) protected against increases in thiobarbituric reactive species and decreasing non‐protein thiols and ascorbic acid levels in liver of mice. Catalase and superoxide dismutase activity inhibition in the liver caused by CCl4 were protected by treatment with BMD (25 mg/kg). Glutathione S‐transferase activity was inhibited by CCl4 and remained unaltered even after treatment with BMD. Sections of liver from CCl4‐exposed mice presented an intense infiltration of inflammatory cells and loss of the cellular architecture. BMD (25 mg/kg) attenuated CCl4‐induced hepatic histological alterations. The results demonstrated the hepatoprotective effects of BMD in the mouse liver, possibly by modulating the antioxidant status. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The protective effect of a fermented substance from Saccharomyces cerevisiae (FSSC) on liver injury caused by acetaminophen (AAP) was studied in mice. Mice were pretreated with FSSC (0.5-2.0 g/kg, p.o.) for 4 d, and on the fourth day, the mice received an overdose of AAP (500 mg/kg, i.p.). Subsequently, they were sacrificed at 7 h, and blood was drawn from the abdominal vein and liver samples were collected. Histological and biochemical examinations revealed that the administration of AAP caused liver injury in the mice, including increases in plasma alanine aminotransferase and asparate aminotransferase activities and decreases in the hepatic reduced form of glutathione (GSH) content and antioxidant enzyme activities. Prior to AAP treatment, the mice pretreated with FSSC showed significantly reduced levels of alanine aminotransferase (ALT) and aspirate aminotransferase (AST) activity. Liver histology in the FSSC-pretreated mice was significant. In these mice, pretreatment with FSSC also served to reduce hepatic GSH depletion and the inhibition of antioxidant enzyme activity caused by AAP overdose. In conclusion, oral administration of FSSC significantly reduced AAP-induced hepatic injury in the mice.  相似文献   

12.
The present investigation was designed to examine the possible additive hypolipidemic effect of carvacrol (CARV) in combination with simvastatin (SIM) on poloxamer 407 (P407)‐induced hyperlipidemia. Rats were injected with P407, (500 mg/ kg; i.p.), twice a week, for 30 days. Treatment was carried out by administration of SIM (20 mg/kg/day; p.o.) or CARV (50 mg/kg/day; p.o.) or combination of them. Treatment with CARV significantly decreased total cholesterol, triglycerides, low‐density lipoprotein, atherogenic index, leptin, and increased high‐density lipoprotein and adiponectin. Moreover, CARV potentiated the hypolipidemic effect of SIM. Both SIM and CARV alleviated the oxidative stress induced by P407. Interestingly, CARV, when combined with SIM, significantly ameliorated SIM‐induced liver and muscle injury by reducing the level of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, creatine kinase, and myoglobin and restoring the normal histological picture of both liver and muscle as well as apoptosis.  相似文献   

13.
Azadirachta indica, a plant used widely in Ayurveda, has been reported to have anti-inflammatory, immunomodulatory and adaptogenic properties. The present study evaluates its hepatoprotective role. Fresh juice of tender leaves of Azadirachta indica (200 mg/kg body wt. p.o.) inhibited paracetamol (2 g/kg body wt. p.o.)-induced lipid peroxidation and prevented depletion of sulfhydryl groups in liver cells. There was an increase in serum marker enzymes of hepatic damage (aspartate transaminase, alanine transaminase and alkaline phosphatase) after paracetamol administration. Azadirachta indica pretreatment stabilized the serum levels of these enzymes. Histopathological observations of liver tissues corroborated these findings.  相似文献   

14.
This study aimed to assess the protective effect of hesperidin (HES) and rutin (RUT) against cisplatin‐induced nephrotoxicity in male rats. Cisplatin (5 mg/kg, intraperitoneal) caused significant increases in serum sodium, blood urea nitrogen, serum creatinine, total sodium and potassium excreted in urine, urine volume, and lipid peroxides measured as the malondialdehyde content of kidney, with significant decreases in serum total protein, creatinine clearance, reduced glutathione content of kidney, and kidney superoxide dismutase activity as compared with the control group. On the other hand, administration of HES (200 mg/kg, per oral [p.o.]) or RUT (30 mg/kg, p.o.) for 14 days with a single cisplatin dose on the tenth day ameliorated the cisplatin‐induced nephrotoxicity as indicated by the restoration of kidney function and oxidative stress biomarkers. Furthermore, the test drugs reduced the histopathological changes induced by cisplatin. In conclusion, HES and RUT showed protective effects against cisplatin‐induced nephrotoxicity.  相似文献   

15.
Lophirones B and C are chalcone dimers with proven chemopreventive activity. This study evaluates the hepatoprotective effect lophirones B and C in acetaminophen‐induced hepatic damage in mice using biomarkers of hepatocellular indices, oxidative stress, proinflammatory factors and lipid peroxidation. Oral administrations of lophirones B and C significantly (p < 0.05) attenuated acetaminophen‐mediated alterations in serum alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, albumin and total bilirubin. Similarly, acetaminophen‐mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6‐ phosphate dehydrogenase were significantly attenuated in the liver of mice. Increased levels of conjugated dienes, lipid hydroperoxides, malondialdehyde, protein carbonyl and fragmented DNA were significantly lowered by lophirones B and C. Levels of tumour necrosis factor‐α, interleukin‐6 and 8 were significantly lowered in serum of acetaminophen treated mice by the chalcone dimers. Overall, results of this study show that lophirones B and C halted acetaminophen‐mediated hepatotoxicity.  相似文献   

16.
Possible hepatoprotective effect of Curcuma longa and/or Nigella sativa against hepatotoxicity induced by coadministration of sodium valproate (SV) and paracetamol was studied. Rats were divided into 10 groups, control groups 1, 2, 3, and 4 received vehicles, C. longa (200 mg/kg, p.o.), N. sativa (250 mg/kg, p.o.), or both herbs for 21 days, respectively. Toxicity groups 5, 6, and 7 received SV (300 mg/kg, i.p.), paracetamol (1000 mg/kg, p.o.) for the last 4 days or both for 21 days, respectively. Protection groups 8, 9, and 10 received C. longa, N. sativa, or both, respectively, 1 h before the administration of both the drugs for 21 days. SV and/or paracetamol significantly increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, relative liver/body weight ratio, malondialdehyde (MDA), tumor necrosis factor alpha (TNF‐α), and caspase‐3 (Casp‐3) while significantly decreased albumin, total protein, glutathione (GSH) reduced, GSH peroxidase, and superoxide dismutase (SOD). Preadministration of C. longa and/or N. sativa caused protective effect against the hepatotoxicity induced by both drugs.  相似文献   

17.
Treatment of rats with paracetamol and CCl4 produced a significant increase in the levels of serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), total and direct bilirubin. Rats pretreated with methanolic extract of roots of H. indicus (100-500 mg/kg body weight, po) exhibited rise in the levels of these enzymes but it was significantly less as compared to those treated with paracetamol or CCl4 alone. The results of methanolic extract of H. indicus were comparable with the standard hepatoprotective agent silymarin (100 mg/kg). Maximum hepatoprotective effect was found to be at the dose of 250 mg/kg body weight in case of CCl4 induced hepatic damage while 500 mg/kg body weight in case of paracetamol induced hepatic damage. The results suggest that methanolic extract of H. indicus roots possesses a potential antihepatotoxic activity.  相似文献   

18.
The biological effects of drug vehicles are often overlooked, often leading to artifacts in acetaminophen-induced liver injury assessment. Therefore, we decided to investigate the effect of dimethylsulfoxide, dimethylformamide, propylene glycol, ethanol, and Tween 20 on acetaminophen-induced liver injury. C57BL/6 male mice received a particular drug vehicle (0.6 or 0.2 mL/kg, i.p.) 30 min before acetaminophen administration (300 mg/kg, i.p.). Control mice received vehicle alone. Liver injury was assessed by measuring the concentration of alanine aminotransferase in plasma and observing histopathological changes. The level of reduced glutathione (GSH) was assessed by measuring total nonprotein hepatic sulfhydrils. Dimethylsulfoxide and dimethylformamide (at both doses) almost completely abolished acetaminophen toxicity. The higher dose of propylene glycol (0.6 mL/kg) was markedly protective, but the lower dose (0.2 mL/kg) was only slightly protective. These solvents also reduced acetaminophen-induced GSH depletion. Dimethylformamide was protective when given 2 h before or 1 h after acetaminophen administration, but was ineffective if given 2.5 h after acetaminophen. Ethanol at the higher dose (0.6 mL/kg) was partially protective, whereas ethanol at the lower dose (0.2 mL/kg) as well as Tween 20 at any dose had no influence. None of the vehicles (0.6 mL/kg) was hepatotoxic per se, and none of them was protective in a model of liver injury caused by D-galactosamine and lipopolysaccharide.  相似文献   

19.
This study aimed to assess the protective effect of cinnamic acid (CA) and cinnamaldehyde (CD) against cisplatin‐induced nephrotoxicity. A single dose of cisplatin (5 mg/kg), injected intraperitoneally to male rats, caused significant increases in serum urea, creatinine levels, and lipid peroxides measured as the malondialdehyde content of kidney, with significant decreases in serum albumin, reduced glutathione, and the activity of antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) of kidney as compared with the control group. On the other hand, administration of CA (50 mg/kg, p.o.) or CD (40 mg/kg, p.o.) for 7 days before cisplatin ameliorated the cisplatin‐induced nephrotoxicity as indicated by the restoration of kidney function and oxidative stress parameters. Furthermore, they reduced the histopathological changes induced by cisplatin. In conclusion, CA and CD showed protective effects against cisplatin‐induced nephrotoxicity where CD was more effective than CA; affects that might be attributed to their antioxidant activities.  相似文献   

20.
Hypercholesterolemia and oxidative stress are known to accelerate coronary artery disease and progression of atherosclerotic lesions. In the present study, an attempt was made to evaluate the putative antihypercholesterolemic and antioxidative effects of an ethanolic extract of the oyster mushroom (Pleurotus ostreatus) and chrysin, one of its major components, in hypercholesterolemic rats. Hypercholesterolemia was induced in rats by a single intraperitoneal injection of Triton WR-1339 (300 mg/kg body weight (b.wt.)), which resulted in persistently elevated blood/serum levels of glucose, lipid profile parameters (total cholesterol, triglycerides, low-density lipoprotein-, and very low-density lipoprotein-cholesterol), and of hepatic marker enzymes (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase). In addition, lowered mean activities of hepatic antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) and lowered mean levels of nonenzymatic antioxidants (reduced glutathione, vitamin C, and vitamin E) were observed. Oral administration of the mushroom extract (500 mg/kg b.wt.) and chrysin (200 mg/kg b.wt.) to hypercholesterolemic rats for 7 days resulted in a significant decrease in mean blood/serum levels of glucose, lipid profile parameters, and hepatic marker enzymes and a concomitant increase in enzymatic and nonenzymatic antioxidant parameters. The hypercholesterolemia-ameliorating effect was more pronounced in chrysin-treated rats than in extract-treated rats, being almost as effective as that of the standard lipid-lowering drug, lovastatin (10 mg/kg b.wt.). These results suggest that chrysin, a major component of the oyster mushroom extract, may protect against the hypercholesterolemia and elevated serum hepatic marker enzyme levels induced in rats injected with Triton WR-1339.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号