共查询到20条相似文献,搜索用时 15 毫秒
1.
Yao Zheng Jiajia Chen Xin Shi Xinpei Zhu Jiahao Wang Limeng Huang Ke Si Colin J.R. Sheppard Wei Gong 《Journal of biophotonics》2019,12(1)
Two‐photon microscopy (2PM) is one of the most widely used tools for in vivo deep tissue imaging. However, the spatial resolution and penetration depth are still limited due to the strong scattering background. Here we demonstrate a two‐photon focal modulation microscopy. By utilizing the modulation and demodulation techniques, background rejection capability is enhanced, thus spatial resolution and imaging penetration depth are improved. Compared with 2PM, the transverse resolution is increased by 70%, while the axial resolution is increased to 2‐fold. Furthermore, when applied in conventional 2PM mode, it can achieve inertial‐free scanning in either transverse or axial direction with in principle unlimited scanning speed. Finally, we applied 2PFMM in thick scattering samples to further examine the imaging performance. The results show that the signal‐to‐background ratio of 2PFMM can be improved up to five times of 2PM at the depth of 500 μm. Fluorescent imaging in the mouse brain tissue. 3D Thy1‐GFP hippocampal neurons imaged by (A) 2PM compared with (B) 2PFMM; (C‐H) xy maximum‐intensity projection imaged by 2PM compared with 2PFMM. Scale bar 50 μm. 相似文献
2.
Imaging neuronal structure dynamics using 2‐photon super‐resolution patterned excitation reconstruction microscopy 下载免费PDF全文
Ben E. Urban Lei Xiao Biqin Dong Siyu Chen Yevgenia Kozorovitskiy Hao F. Zhang 《Journal of biophotonics》2018,11(3)
Visualizing fine neuronal structures deep inside strongly light‐scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two‐photon super‐resolution patterned excitation reconstruction (2P‐SuPER) microscopy for 3‐dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P‐SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P‐SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta‐burst stimulation of Schaffer collateral axons. 2P‐SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies. 相似文献
3.
Oblique scanning 2‐photon light‐sheet fluorescence microscopy for rapid volumetric imaging 下载免费PDF全文
Light‐sheet fluorescence microscopy (LSFM) is a powerful tool for biological studies because it allows for optical sectioning of dynamic samples with superior temporal resolution. However, LSFM using 2 orthogonally co‐aligned objectives requires a special sample geometry, and volumetric imaging speed is limited due to physical sample translation. This paper describes an oblique scanning 2‐photon LSFM (OS‐2P‐LSFM) that eliminates these limitations by using a single objective near the sample and a refractive scanning‐descanning system. This system also provides improved light‐sheet confinement against scattering by using a 2‐photon Bessel beam. The OS‐2P‐LSFM hold promise for studying structural, functional and dynamic aspects of living tissues and organisms because it allows for high‐speed, translation‐free and scattering‐robust 3D imaging of large biological specimens. 相似文献
4.
Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts 总被引:1,自引:0,他引:1
Rubart M Wang E Dunn KW Field LJ 《American journal of physiology. Cell physiology》2003,284(6):C1654-C1668
The ability to image calciumsignals at subcellular levels within the intact depolarizing heartcould provide valuable information toward a more integratedunderstanding of cardiac function. Accordingly, a system combiningtwo-photon excitation with laser-scanning microscopy was developed tomonitor electrically evoked [Ca2+]itransients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca2+]itransients were recorded at depths 100 µm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked[Ca2+]i transients were highly synchronizedamong neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50%(t90-50%) and from 50 to 10%(t50-10%) of the peak[Ca2+]i were (means ± SE) 73 ± 4 and 126 ± 10 ms, respectively, and at 2 Hz, 62 ± 3 and94 ± 6 ms (n = 19, P < 0.05 vs.1 Hz) in rhod-2-loaded cardiomyocytes.[Ca2+]i decay was markedly slower infura-2-loaded hearts (t90-50% at 1 Hz,128 ± 9 ms and at 2 Hz, 88 ± 5 ms;t50-10% at 1 Hz, 214 ± 18 ms and at2 Hz, 163 ± 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2-induced deceleration of[Ca2+]i decline resulted from increasedcytosolic Ca2+ buffering, because the kinetics of rhod-2decay resembled those obtained with fura-2 after incorporation of theCa2+ chelator BAPTA. Propagating calcium waves and[Ca2+]i amplitude alternans were readilydetected in paced hearts. This approach should be of general utility tomonitor the consequences of genetic and/or functional heterogeneity incellular calcium signaling within whole mouse hearts at tissue depthsthat have been inaccessible to single-photon imaging. 相似文献
5.
Alexandra Sorvina Christie A. Bader Mitchell C. Lock Douglas A. Brooks Janna L. Morrison Sally E. Plush 《Journal of biophotonics》2018,11(1)
Coronary heart disease is one of the largest causes of death worldwide, making this a significant health care issue. A critical problem for the adult human heart is that it does not undergo effective repair in response to damage, leaving patients with a poor prognosis. Unlike the adult, fetal hearts have the ability to repair after myocardial damage. Using two‐photon microscopy, we have visualised the morphological and metabolic changes following myocardial infarction in sheep fetuses, to characterise response to cardiac injury in a mammalian model. Following myocardial infarction, fetal hearts showed no significant increase in collagen deposition in the region of the infarction, when compared to either the surrounding tissue or shams. In contrast, metabolic activity (i. e. NAD(P)H and FAD) was significantly reduced in the region of myocardial infarction, when compared to either the surrounding tissue or sham hearts. For comparison, we also imaged two hearts from preadolescent sheep (sham and myocardial infarction) and showed highly ordered collagen deposition with decreased metabolic activity within the infarcted area. Therefore, two‐photon imaging had the capacity to image both morphological and metabolic changes in response to myocardial infarction and showed differences in the response with age. Picture : Two‐photon imaging of myocardial infarction ( b and d ) enabled the visualisation of increased collagen (blue; Em=431 nm) and changes in other tissue autofluorescence (green; Em=489–606 nm) in fetal ( a and b ) and preadolescent ( c and d ) hearts, compared to shams ( a and c ). The excitation wavelength was 840 nm. Scale bars: 10 μm.
6.
7.
N.I. Kupynyak O.V. Ikkert S.G. Shlykov L.G. Babich V.V. Manko 《Cell biochemistry and function》2017,35(1):42-49
To examine ryanodine‐sensitive Ca2+ channels in mitochondria of rat hepatocytes and their role in energy state of the cells via investigation of the ryanodine effect on mitochondrial membrane potential. Oxygen consumption was measured by polarography using the Clark electrode. The substrates of oxidation such as pyruvate (5mM), α‐ketoglutarate (5mM), or succinate (5mM) were used. Oxidative phosphorylation was stimulated by the addition of adenosine diphosphate (200nM). Mitochondrial membrane potential was measured using a voltage‐sensitive fluorescent probe tetramethylrhodamine‐methyl‐ester (0.1μM) and was analyzed by a flow cytometer. To evaluate the intact mitochondria, we used carbonil cyanide m‐chlorophenyl hydrazone (CCCP, 10μM). Changes in the ionized calcium concentration in rat liver mitochondria were measured using a fluorescent probe Fluo‐4 AM. Effect of ryanodine on oxygen consumption of rat liver mitochondria depends on the oxidation substrate and the incubation time. Oxidation of pyruvate in the presence of ryanodine (0.05μM) decreased the membrane potential of rat liver mitochondria by 38.4%. At higher concentrations, ryanodine (0.1μM or 1μM) led to decrease of membrane potential by 51.7% and 42.8%, respectively. In contrast, oxidation of α‐ketoglutarate in the presence of ryanodine (0.05μM) increased mitochondrial membrane potential by 16.8%. However, at higher concentrations, ryanodine (0.1μM or 1μM) triggered a decreasing of membrane potential by 42.5% and 31.0%, respectively. Therefore, ryanodine at various concentrations (0.05μM, 0.1μM, or 1μM) causes differential effects on Ca2+ concentration in the mitochondria matrix under oxidation of pyruvate or α‐ketoglutarate. The data suggest the presence of ryanodine receptors in mitochondrial membrane of rat hepatocytes. Their inhibition with higher concentrations of ryanodine leads to decreasing of intra‐mitochondrial Ca2+ concentration and affecting the energy state of mictochondria in hepatocytes. 相似文献
8.
Aleksandr A. Lanin Artem S. Chebotarev Matvei S. Pochechuev Ilya V. Kelmanson Daria A. Kotova Dmitry S. Bilan Yulia G. Ermakova Andrei B. Fedotov Anatoly A. Ivanov Vsevolod V. Belousov Aleksei M. Zheltikov 《Journal of biophotonics》2020,13(3)
We demonstrate an accurate quantitative characterization of absolute two‐ and three‐photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high‐brightness, cell‐specific two‐ and three‐photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two‐photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep‐tissue experiments. 相似文献
9.
Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths 总被引:34,自引:0,他引:34
Free Ca2+ concentrations in the cytosol of individual small cells can be recorded with a new fluorescent Ca2+ indicator, "fura-2", and a fluorescence microscope modified to chop rapidly between two wavelengths of excitation. Both fura-2 and its Ca2+ complex fluoresce strongly, but their excitation peaks differ in wavelength. Alternation between the two preferred wavelengths allows assessment of the ratio of Ca2+-bound dye to free dye and hence cytosolic free Ca2+. This ratio measurement largely cancels out the effects of cell thickness, dye content, or instrumental efficiency, uncertainties that can jeopardize measurements at single wavelengths. We describe instrumentation that supplies rapidly alternating excitation wavelengths to either a standard cuvet or a fluorescence microscope. Its use is illustrated by experiments showing changes in cytosolic [Ca2+] accompanying activation of human platelets in suspension or single mouse thymocytes on the microscope. 相似文献
10.
YUXIN LI MINGZHEN MAO YIMING LI LIXIA XIONG ZHENGMING LI JUNYING XU 《Physiological Entomology》2011,36(3):230-234
The modulation of voltage‐gated calcium channels by chlorantraniliprole in the central neurones isolated from third‐instar larvae of Spodoptera exigua is studied by the whole‐cell patch‐clamp technique. The current of calcium in the third‐instar larvae of S. exigua is identified as a high‐voltage activated Ca2+ current. During the 10‐min recording, the current–voltage relationship curves of whole‐cell calcium channels are shifted in a negative direction by 10 mV compared with the control group. The fact that the gravity rundown of calcium current in the treated group is more apparent than in the control group demonstrates that the open channels are constantly inactivated. In addition, chlorantraniliprole inhibits the recorded calcium currents in a concentration‐dependent manner, which is irreversible on washout. 相似文献
11.
Sergei E. Permyakov Tatyana I. Khokhlova Vladimir N. Uversky Eugene A. Permyakov 《Proteins》2010,78(12):2609-2624
The triggering of Ca2+ signaling pathways relies on Ca2+/Mg2+ specificity of proteins mediating these pathways. Two homologous milk Ca2+‐binding proteins, bovine α‐lactalbumin (bLA) and equine lysozyme (EQL), were analyzed using the simplest “four‐state” scheme of metal‐ and temperature‐induced structural changes in a protein. The association of Ca2+/Mg2+ by native proteins is entropy‐driven. Both proteins exhibit strong temperature dependences of apparent affinities to Ca2+ and Mg2+, due to low thermal stabilities of their apo‐forms and relatively high unfavorable enthalpies of Mg2+ association. The ratios of their apparent affinities to Ca2+ and Mg2+, being unusually high at low temperatures (5.3–6.5 orders of magnitude), reach the values inherent to classical EF‐hand motifs at physiological temperatures. The comparison of phase diagrams predicted within the model of competitive Ca2+ and Mg2+ binding with experimental data strongly suggests that the association of Ca2+ and Mg2+ ions with bLA is a competitive process, whereas the primary Mg2+ site of EQL is different from its Ca2+‐binding site. The later conclusion is corroborated by qualitatively different molar ellipticity changes in near‐UV region accompanying Mg2+ and Ca2+ association. The Ca2+/Mg2+ selectivity of Mg2+‐site of EQL is below an order of magnitude. EQL exhibits a distinct Mg2+‐specific site, probably arising as an adaptation to the extracellular environment. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献
12.
Elastic fibers are key constituents of the skin. The commonly adopted optical technique for visualizing elastic fibers in the animal skin in vivo is 2‐photon microscopy (2 PM) of autofluorescence, which typically suffers from low signal level. Here we demonstrate a new optical methodology to image elastic fibers in animal models in vivo: 3‐photon microscopy (3 PM) excited at the 1700‐nm window combining with preferential labeling of elastic fibers using sulforhodamine B (SRB). First, we demonstrate that intravenous injection of SRB can circumvent the skin barrier (encountered in topical application) and preferentially label elastic fibers, as verified by simultaneous 2 PM of both autofluorescence and SRB fluorescence from skin structures. Then through 3‐photon excitation property characterization, we show that 3‐photon fluorescence can be excited from SRB at the 1700‐nm window, and 1600‐nm excitation is most efficient according to our 3‐photon action cross section measurement. Based on these results and using our developed 1600‐nm femtosecond laser source, we finally demonstrate 3 PM of SRB‐labeled elastic fibers through the whole dermis in the mouse skin in vivo, with only 3.7‐mW optical power deposited on the skin surface. We expect our methodology will provide novel optical solution to elastic fiber research. 相似文献
13.
Kristīne Ošiņa Evita Rostoka Jelizaveta Sokolovska Natalia Paramonova Egils Bisenieks Gunars Duburs Nikolajs Sjakste Tatjana Sjakste 《Cell biochemistry and function》2016,34(1):3-6
Impaired degradation of proteins by the ubiquitin–proteasome system (UPS) is observed in numerous pathologies including diabetes mellitus (DM) and its complications. Dysregulation of proteasomal degradation might be because of altered expression of genes and proteins involved in the UPS. The search for novel compounds able to normalize expression of the UPS appears to be a topical problem. A novel group of 1,4‐dihydropyridine (1,4‐DHP) derivatives lacking Ca2+‐antagonists activities, but capable to produce antidiabetic, antioxidant and DNA repair enhancing effects, were tested for ability to modify Psma6 mRNA expression levels in rat kidneys and blood in healthy animals and in rats with streptozotocin (STZ) induced DM. Psma6 gene was chosen for the study, as polymorphisms of its human analogue are associated with DM and cardiovascular diseases. 1,4‐DHP derivatives (metcarbatone, etcarbatone, glutapyrone, J‐9‐125 and AV‐153‐Na) were administered per os for three days (0.05 mg/kg and/or 0.5 mg/kg). Psma6 gene expression levels were evaluated by quantitative PCR. Psma6 expression was higher in kidneys compared to blood. Induction of diabetes caused increase of Psma6 expression in kidneys, although it was not changed in blood. Several 1,4‐DHP derivatives increased expression of the gene both in kidneys and blood of control and model animals, but greater impact was observed in kidneys. The observed effect might reflect coupling of antioxidant and proteolysis‐promoting activities of the compounds. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
Maximal Ca2+-activated force and myofilament Ca2+ sensitivity in intact mammalian hearts. Differential effects of inorganic phosphate and hydrogen ions 总被引:5,自引:0,他引:5 下载免费PDF全文
Myofilament Ca2+ sensitivity and maximal Ca2+-activated force are fundamental properties of the contractile proteins in the heart. Although these properties can be evaluated directly in skinned preparations, they have remained elusive in intact tissue. A novel approach is described that allows maximal Ca2+-activated force to be measured and myofilament Ca2+ sensitivity to be deduced from isovolumic pressure in intact perfused ferret hearts. Phosphorus nuclear magnetic resonance spectra are obtained sequentially to measure the intracellular inorganic phosphate (Pi) and hydrogen ion (H+) concentrations. After a period of perfusion with oxygenated, HEPES-buffered Tyrode solution, hypoxia is induced as a means of elevating [Pi]. The decline in twitch pressure can then be related to the measured increase in [Pi]. After recovery, hearts are perfused with ryanodine to enable tetanization and the measurement of maximal Ca2+-activated pressure. Hypoxia is induced once again, and maximal pressure is correlated with [Pi]. We then compare the relations between [Pi] and maximal pressure on the one hand, and [Pi] and twitch pressure on the other. If the two relations differ only by a constant scaling factor, then the decline in twitch pressure can be attributed solely to a decline in maximal pressure, with no change in myofilament sensitivity. We obtained such a result during hypoxia, which indicated that Pi accumulation decreases maximal force but does not change myofilament sensitivity. We compared these results with acidosis (induced by bubbling with 5% CO2). In contrast with Pi, the accumulation of H+ decreases twitch force primarily by shifting myofilament Ca2+ sensitivity. This approach in intact tissue has strengths and limitations complementary to those of skinned muscle experiments. 相似文献
15.
Chi‐Kuang Sun Chien‐Ting Kao Ming‐Liang Wei Shih‐Hsuan Chia Franz X. Krtner Anatoly Ivanov Yi‐Hua Liao 《Journal of biophotonics》2019,12(5)
Intraoperative margin assessment of surgical tissues during cancer surgery is clinically important, especially in the case of tissue conserving surgery like Mohs micrographic surgery in which minimization of the surgical area is considered crucial. Frozen pathology is the gold standard of assessing excised tissues for signs of remaining cancerous lesions. The current protocol, however, is time‐consuming and labor‐intensive. Instead of the complex frozen sectioning, staining, and traditional white light microscopy imaging protocol, optically sectioned histopathological imaging of hematoxylin‐eosin stained whole‐mount skin tissues with a subfemtoliter resolution is demonstrated by using nonlinear microscopy in this study. With our proposed method, the reagents of staining and the contrast of imaging are fully consistent with the current clinical standard of frozen pathology, thus facilitating rapid intraoperative assessment of surgical tissues for future applications. Image: Slide‐free nonlinear microscopy imaging of H&E stained whole‐mount skin tissue showing the morphology of sweat glands. 相似文献
16.
Ca2+‐binding sites in proteins exhibit a wide range of polygonal geometries that directly relate to an equally‐diverse set of biological functions. Although the highly‐conserved EF‐Hand motif has been studied extensively, non‐EF‐Hand sites exhibit much more structural diversity which has inhibited efforts to determine the precise location of Ca2+‐binding sites, especially for sites with few coordinating ligands. Previously, we established an algorithm capable of predicting Ca2+‐binding sites using graph theory to identify oxygen clusters comprised of four atoms lying on a sphere of specified radius, the center of which was the predicted calcium position. Here we describe a new algorithm, MUG (MUltiple Geometries), which predicts Ca2+‐binding sites in proteins with atomic resolution. After first identifying all the possible oxygen clusters by finding maximal cliques, a calcium center (CC) for each cluster, corresponding to the potential Ca2+ position, is located to maximally regularize the structure of the (cluster, CC) pair. The structure is then inspected by geometric filters. An unqualified (cluster, CC) pair is further handled by recursively removing oxygen atoms and relocating the CC until its structure is either qualified or contains fewer than four ligand atoms. Ligand coordination is then determined for qualified structures. This algorithm, which predicts both Ca2+ positions and ligand groups, has been shown to successfully predict over 90% of the documented Ca2+‐binding sites in three datasets of highly‐diversified protein structures with 0.22 to 0.49 Å accuracy. All multiple‐binding sites (i.e. sites with a single ligand atom associated with multiple calcium ions) were predicted, as were half of the low‐coordination sites (i.e. sites with less than four protein ligand atoms) and 14/16 cofactor‐coordinating sites. Additionally, this algorithm has the flexibility to incorporate surface water molecules and protein cofactors to further improve the prediction for low‐coordination and cofactor‐coordinating Ca2+‐binding sites. Proteins 2009. © 2008 Wiley‐Liss, Inc. 相似文献
17.
Sun‐induced chlorophyll fluorescence from high‐resolution imaging spectroscopy data to quantify spatio‐temporal patterns of photosynthetic function in crop canopies 下载免费PDF全文
Alexander Damm Anke Schickling Cinzia Panigada Sergio Cogliati Mark Müller‐Linow Agim Balvora Uwe Rascher 《Plant, cell & environment》2016,39(7):1500-1512
Passive detection of sun‐induced chlorophyll fluorescence (SIF) using spectroscopy has been proposed as a proxy to quantify changes in photochemical efficiency at canopy level under natural light conditions. In this study, we explored the use of imaging spectroscopy to quantify spatio‐temporal dynamics of SIF within crop canopies and its sensitivity to track patterns of photosynthetic activity originating from the interaction between vegetation structure and incoming radiation as well as variations in plant function. SIF was retrieved using the Fraunhofer Line Depth (FLD) principle from imaging spectroscopy data acquired at different time scales a few metres above several crop canopies growing under natural illumination. We report the first maps of canopy SIF in high spatial resolution. Changes of SIF were monitored at different time scales ranging from quick variations under induced stress conditions to seasonal dynamics. Natural changes were primarily determined by varying levels and distribution of photosynthetic active radiation (PAR). However, this relationship changed throughout the day demonstrating an additional physiological component modulating spatio‐temporal patterns of SIF emission. We successfully used detailed SIF maps to track changes in the canopy's photochemical activity under field conditions, providing a new tool to evaluate complex patterns of photosynthesis within the canopy. 相似文献
18.
In recent years, two‐photon fluorescence microscopy has gained significant interest in bioimaging. It allows the visualization of deeply buried inhomogeneities in tissues. The near‐infrared (NIR) dyes are also used for deep tissue imaging. Indocyanine green (ICG) is the only U.S. Food and Drug Administration (FDA) approved exogenous contrast agent in the NIR region for clinical applications. However, despite its potential candidature, it had never been used as a two‐photon contrast agent for biomedical imaging applications. This letter provides an insight into the scope and application of the two‐photon excitation property of ICG to the second excited singlet (S2) state in aqueous solution. Furthermore, in this work, we demonstrate the two‐photon cellular imaging application of ICG using direct fluorescence emission from S2 state for the first time. Our results show that two‐photon excitation to S2 state of ICG could be achieved with approximately 790 nm wavelength of femtosecond laser, which lies in well‐known “tissue‐optical window.” This property would enable light to penetrate much deeper in the turbid medium such as biological tissues. Thus, ICG could be used as the first FDA approved NIR exogenous contrast agent for two‐photon imaging. These findings can make remarkable influence on preclinical and clinical cell imaging. 相似文献
19.
Ponce Zumino Amira Baiardi Gustavo Schanne Otto F. Ruiz Petrich Elena 《Molecular and cellular biochemistry》1998,186(1-2):79-86
The effects of regional and global ischemia on cellular electrical activity and on arrhythmias induced by reperfusion were studied at different Mg2+ concentrations (Mg2+
o, 0, 1.2, and 4.8 mM) in perfused rat hearts. Surface electrograms and transmembrane potentials were recorded during control, 10 min of ischemia (perfusion arrest or coronary ligation), and reperfusion. Increasing Mg2+
o from 0-4.8 mM decreased heart rate, did not alter action potential morphology, and had a strong antiarrhythmic action on reperfusion following coronary ligation. At low and normal Mg2+
o, the incidence of tachyarrhythmias was between 70 and 80%. Global ischemia led to progressive atrioventricular block and the final ventricular beating rate was similar at all Mg2+
o despite unequal initial values. The severity of arrhythmias was similar to that found after regional ischemia in Mg2+
o = 0, but much lower at normal and high Mg2+
o. The resting depolarization induced by coronary ligation decreased as Mg2+
o was raised, but such a relation was not seen during global ischemia where the depolarization was less marked. The action potential duration did not vary with the ventricular rate between 160 and 380 beats per min but increased considerably when sinus rate was markedly slowed (40 to 80 bpm) by raising Mg2+
o to 9.6 mM. Our data show that a high Mg2+
o exerts a strong protection against reperfusion arrhythmias regardless of the type of ischemia. Modulation of the sinus rhythm by Mg2+ may contribute to its protective effect by decreasing K+
o accumulation and Na+
i loading during ischemia. 相似文献
20.
1. Amino acid incorporation in intact rabbit reticulocytes was unaffected by depletion of Ca2+ with EGTA. 2. The Ca2+ ionophore A23187 strongly inhibited incorporation in reticulocytes incubated in 1 mM Ca2+ but not in EGTA. Polysomal profiles and average ribosomal transit times of cells treated with Ca2+ ionophore at 1 mM Ca2+ were characteristic of translational elongation block. 3. The behavior of reticulocytes with respect to Ca2+ and A23187 contrasts with that of nucleated cells possessing endoplasmic reticulum in which protein synthesis is inhibited at translational initiation by either Ca2+ depletion or by exposure to Ca2+ ionophore. 相似文献