首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium (Cd2+) is a known carcinogen that inactivates the DNA mismatch repair (MMR) pathway. In this study, we have tested the effect of Cd2+ exposure on the enzymatic activity of the mismatch binding complex MSH2–MSH6. Our results indicate that Cd2+ is highly inhibitory to the ATP binding and hydrolysis activities of MSH2–MSH6, and less inhibitory to its DNA mismatch binding activity. The inhibition of the ATPase activity appears to be dose and exposure time dependent. However, the inhibition of the ATPase activity by Cd2+ is prevented by cysteine and histidine, suggesting that these residues are essential for the ATPase activity and are targeted by Cd2+. A comparison of the mechanism of inhibition with N-ethyl maleimide, a sulfhydryl group inhibitor, indicates that this inhibition does not occur through direct inactivation of sulfhydryl groups. Zinc (Zn2+) does not overcome the direct inhibitory effect of Cd2+ on the MSH2–MSH6 ATPase activity in vitro. However, the increase in the mutator phenotype of yeast cells exposed to Cd2+ was prevented by excess Zn2+, probably by blocking the entry of Cd2+ into the cell. We conclude that the inhibition of MMR by Cd2+ is through the inactivation of the ATPase activity of the MSH2–MSH6 heterodimer, resulting in a dominant negative effect and causing a mutator phenotype.  相似文献   

2.
We report a transgenic zebrafish (Danio rerio) designed to respond to heavy metals using a metal-responsive promoter linked to a fluorescent reporter gene (DsRed2). The metallothionein MT-Ia1 promoter containing metal-responsive elements was derived from the Asian green mussel, Perna viridis. The promoter is known to be induced by a broad spectrum of heavy metals. The promoter-reporter cassette cloned into the Tol2 transposon vector was microinjected into zebrafish embryos that were then reared to maturity. A transgene integration rate of 28 % was observed. The confirmed transgenics were mated with wild-type counterparts, and pools of F1 embryos were exposed to sub-lethal doses of Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+. The red fluorescence response of zebrafish embryos was observed 8 h post- exposure to these sub-lethal doses of heavy metals using a fluorescence microscope. Reporter expression estimated by real-time PCR revealed eightfold, sixfold and twofold increase on exposure to highest concentrations of Hg2+, Cd2+ and Cu2+, while Pb2+ and Zn2+ had no effect. This biosensor could be a first-level screening method for confirming aquatic heavy metal bio-toxicity to eukaryotes.  相似文献   

3.
Eukaryotic MutS homolog 6(MSH6) is a DNA mismatch recognition protein associated with mismatch repair of simple base-base mispairs and small insertion-deletion loops. As replication or recombination errors generated during embryonic development of living organisms should be efficiently corrected to maintain the integrity of genetic materials, we attempted to study MSH6 gene expression in developing zebrafish (Danio rerio) and the influence of MSH6 expression on the production of mismatch binding factors. A full-length cDNA encoding zebrafish MSH6 (zMSH6) was first obtained by rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of zMSH6 shares 57% and 56% identity with human and mouse MSH6, respectively. The 190-kDa recombinant zMSH6 containing 1,369 amino acids bound preferentially to a heteroduplex than to a homoduplex DNA. Northern blot and semiquantitative RT-PCR analysis detected apparent levels of zMSH6 mRNA expression in 12 and 36-hr-old zebrafish embryos, while this expression in 84-hr-old larvae was dramatically reduced to 23% of that in 12-hr-old embryos when beta-actin mRNA was constitutively synthesized. Incubation of G-T and G-G heteroduplex probes with 12 to 60-hr-old zebrafish extracts produced predominantly high-shifting binding complexes with very similar band intensity. Although low in zMSH6 mRNA production, the extracts of 84-hr-old larvae interacted significantly stronger than the embryonic extracts with both G-T and G-G mispairs, producing high and low-shifting complexes. Heteroduplex-recognition proteins in 108-hr-old larvae gave a similar pattern of mismatch binding. The intensities of G-T complexes produced by 84 and 108-hr-old zebrafish extracts were 2.5 to 3-fold higher than those of G-G complexes. Our data indicate that the production of efficient MSH6-independent binding factors, particularly G-T-specific recognition proteins, is upregulated in zebrafish at the larval stage when MSH6 gene activity is downregulated.  相似文献   

4.
The effect of equimolar concentrations of Hg2+ and Cd2+ on the whole cell absorption spectra, absorption spectra of the extracted phycocyanin (PC) and fluorescence emission spectra of phycobilisomes (PBS) was investigated in the cells of Anabaena flos-aquae. The PC component of the PBS was found to be extremely sensitive to the Hg2+ rather than the Cd2+ ions. Further, the results showed that Hg2+ and Cd2+ induced decrease in the rate of Hill activity (H2O - DCPIP) was partially restored by the electron donor NH2OH, not by the diphenyl carbazide. Similarly, chlorophyll a fluorescence emission in the presence of metals showed that addition of NH2OH could effectively reverse the metal induced alterations in the fluorescence emission intensity. These results, together, suggested that Hg2+ and Cd2+ caused damage to the photosystems (PS) II reaction center. However, a relatively higher stimulation of the chlorophyll a emission at 695 nm with a red shift of 4.0 nm in the presence of Hg2+, and Cd2+ induced preferential decrease in the emission intensity at 676 nm as compared with the peak at 695 nm were indicative of the differential action of Hg2+ and Cd2+ on the PS II.  相似文献   

5.
In eukaryotes the MSH2-MSH3 and MSH2-MSH6 heterodimers initiate mismatch repair (MMR) by recognizing and binding to DNA mismatches. The MLH1-PMS1 heterodimer then interacts with the MSH proteins at or near the mismatch site and is thought to act as a mediator to recruit downstream repair proteins. Here we analyzed five msh2 mutants that are functional in removing 3' non-homologous tails during double-strand break repair but are completely defective in MMR. Because non-homologous tail removal does not require MSH6, MLH1, or PMS1 functions, a characterization of the msh2 separation of function alleles should provide insights into early steps in MMR. Using the Taq MutS crystal structure as a model, three of the msh2 mutations, msh2-S561P, msh2-K564E, msh2-G566D, were found to map to a domain in MutS involved in stabilizing mismatch binding. Gel mobility shift and DNase I footprinting assays showed that two of these mutations conferred strong defects on MSH2-MSH6 mismatch binding. The other two mutations, msh2-S656P and msh2-R730W, mapped to the ATPase domain. DNase I footprinting, ATP hydrolysis, ATP binding, and MLH1-PMS1 interaction assays indicated that the msh2-S656P mutation caused defects in ATP-dependent dissociation of MSH2-MSH6 from mismatch DNA and in interactions between MSH2-MSH6 and MLH1-PMS1. In contrast, the msh2-R730W mutation disrupted MSH2-MSH6 ATPase activity but did not strongly affect ATP binding or interactions with MLH1-PMS1. These results support a model in which MMR can be dissected into discrete steps: stable mismatch binding and sensing, MLH1-PMS1 recruitment, and recycling of MMR components.  相似文献   

6.
Glucose‐6‐phosphate dehydrogenase (G6PD) is the first enzyme on which the pentose phosphate pathway was checked. In this study, purification of a G6PD enzyme was carried out by using rat erythrocytes with a specific activity of 13.7 EU/mg and a yield of 67.7 and 155.6‐fold by using 2′,5′‐ADP Sepharose‐4B affinity column chromatography. For the purpose of identifying the purity of enzyme and molecular mass of the subunit, a sodium dodecyl sulfate‐polyacrylamide gel electrophoresis was carried out. The molecular mass of subunit was calculated 56.5 kDa approximately. Then, an investigation was carried out regarding the inhibitory effects caused by various metal ions (Fe2+, Pb2+, Cd2+, Ag+, and Zn2+) on G6PD enzyme activities, as per Beutler method at 340 nm under in vitro conditions. Lineweaver–Burk diagrams were used for estimation of the IC50 and Ki values for the metals. Ki values for Pb+2, Cd+2, Ag+, and Zn+2 were 113.3, 215.2, 19.4, and 474.7 μM, respectively.  相似文献   

7.
The effects of pre-incubation with mercury (Hg2+) and cadmium (Cd2+) on the activities of individual glycolytic enzymes, on the flux and on internal metabolite concentrations of the upper part of glycolysis were investigated in mouse muscle extracts. In the range of metal concentrations analysed we found that only hexokinase and phosphofructokinase, the enzymes that shared the control of the flux, were inhibited by Hg2+ and Cd2+. The concentrations of the internal metabolites glucose-6-phosphate and fructose-6-phosphate did not change significantly when Hg2+ and Cd2+ were added. A mathematical model was constructed to explore the mechanisms of inhibition of Hg2+ and Cd2+ on hexokinase and phosphofructokinase. Equations derived from detailed mechanistic models for each inhibition were fitted to the experimental data. In a concentration-dependent manner these equations describe the observed inhibition of enzyme activity. Under the conditions analysed, the integral model showed that the simultaneous inhibition of hexokinase and phosphofructokinase explains the observation that the concentrations of glucose-6-phosphate and fructose-6-phosphate did not change as the heavy metals decreased the glycolytic flux.  相似文献   

8.
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.  相似文献   

9.
Zebrafish Danio rerio embryos were exposed to 0, 25, 50 or 75 ppb Hg2+ from 0 to 24 h post‐fertilization (hpf) then placed into Hg2+‐free water. Inductively coupled plasma‐mass spectrophotometer analysis of whole embryo Hg2+ content at 24 hpf showed a positive correlation with exposure regime (Pearson's one‐tailed, r2= 0·698, P < 0·01); at 5 days post‐hatch (dph), whole larval Hg2+ content was not detectable. Hg2+‐induced behavioural deficits in larvae were, therefore, due to changes during embryogenesis and not to residual Hg2+ in the larvae. At 5 dph, larvae were tested for responses to different frequencies but equal intensities of vibrational stimuli generated by a remotely controlled plastic hammer. Data were recorded by high‐speed videography and computer‐analysed for latency of response (ms), amplitude of the response as measured by maximum initial velocity [normalized as body (standard) lengths s?1; Vmax] and duration of behaviour from initial head movement to cessation of caudal tail movement (ms). A single mechanical stimulus resulted in behavioural outcomes that were related to embryonic Hg2+ uptake. Response latency increased with exposure level and displayed an increase of ×1·5–2·5 over control values (ANOVA, P < 0·01). The Vmax decreased with exposure level to a low of 71% of control at the highest Hg2+ concentration (ANOVA, P < 0·01). Duration of behaviour displayed a biphasic response pattern in which exposure to 0, 50 or 75 ppb Hg2+ did not result in a significantly different response yet exposure to 25 ppb Hg2+ caused a significantly longer time of active response (ANOVA, P < 0·01). Repeated stimulation (1, 2 or 4 hits s?1) resulted in a concentration‐dependent increase in response failures. Regardless of stimulation frequency, larvae exposed to 0 or 25 ppb Hg2+ as embryos maintained higher Vmax levels for longer intervals during the testing period than those exposed as embryos to either 50 or 75 ppb Hg2+.  相似文献   

10.
Seed is a developmental stage that is highly protective against external stresses in the plant life cycle. In this study, we analyzed toxicity of essential (Cu2+ and Zn2+) and non-essential heavy metals (Hg2+, Pb2+ and Cd2+) on seed germination and seedling growth in the model species Arabidopsis. Our results show that seedling growth is more sensitive to heavy metals (Hg2+, Pb2+, Cu2+ and Zn2+) in comparison to seed germination, while Cd2+ is the exception that inhibited both of these processes at similar concentrations. To examine if toxicity of heavy metals is altered developmentally during germination, we incubated seeds with Hg2+ or Cd2+ only for a restricted period during germination. Hg2+ displayed relatively strong toxicity at period II (12–24 h after imbibition), while Cd2+ was more effective to inhibit germination at period I (0–12 h after imbibition) rather than at period II. The observed differences are likely to be due in part to selective uptake of different ions by the intact seed, because isolated embryos (without seed coat and endosperm) are more sensitive to both Hg2+ and Cd2+ at period I. We assessed interactive toxicity between heavy metals and non-toxic cations, and found that Ca2+ was able to partially restore the inhibition of seedling growth by Pb2+ and Zn2+.  相似文献   

11.
Nitric oxide (NO), a vital cell‐signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen‐activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd2+) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase‐3‐like protease activation was detected after Cd2+ treatment. This was further confirmed with a caspase‐3 substrate assay. Cd2+‐induced caspase‐3‐like activity was inhibited in the presence of the NO‐specific scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), suggesting that NO mediated caspase‐3‐like protease activation under Cd2+ stress conditions. Pretreatment with cPTIO effectively inhibited Cd2+‐induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd2+‐induced caspase‐3‐like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase‐3‐like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd2+‐induced Arabidopsis PCD by promoting MPK6‐mediated caspase‐3‐like activation.  相似文献   

12.
Introduction – Since the mechanism of Cd2+ stress for plants is not clear, an in vivo method to monitor Cd2+ stress for plants is necessary. However, oxidative burst (OB) is a signal messenger in the process of Cd2+ stress for plants. Objective – To establish an electrochemical method with poly‐o‐phenylenediamine and Pt microparticle modified Pt electrode (POPD–Pt‐MP–Pt) as a microbiosensor for the in vivo detection of oxidative burst induced by Cd2+ stress in oilseed rape (Brassica napus L.). Methodology – The optimal fabrication of POPD–Pt‐MP–Pt biosensor was achieved. Electrochemical signal was collected by amperometry. Results – After oilseed rape was exposed to 84.9 mM CdCl2 stress, three oxidative bursts were observed in oilseed rape by amperometry at 3.3 h, 8.4 h and 13.2 h, respectively. However, there was no obvious signal observed in the controlled assay. Conclusion – This contribution presents the in vivo monitoring of the OB process induced by Cd2+ stress in oilseed rape by POPD–Pt‐MP–Pt microbiosensor in real‐time. The novel electrochemical microbiosensor not only facilitates the real‐time study in plant self‐defence response to the adverse environment such as Cd2+ stress, but also provides an effective tool for probing the self‐defence mechanism in plants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
14.
DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.  相似文献   

15.
We have studied the effects of heavy metals (Hg2+, Cu2+, Cd2+) on growth hormone (GH) activation of tyrosine kinase and Ca2+ signaling in the trout (Oncorhynchus mykiss) hepatoma cell line RTH-149. Molecular cloning techniques using primer designed on Oncorhynchus spp. growth hormone receptor (GHR) genes allowed to isolate a highly homologous cDNA fragment from RTH-149 mRNA. Thereafter, cells were analysed by Western blotting or, alternatively, with Ca2+ imaging using fura-2/AM. Exposure of cells to ovine GH alone produced a stimulation of the JAK2/STAT5 pathway and intracellular free Ca2+ variations similar to what has been observed in mammalian models. Cell pre-exposure to Cu2+, Hg2+ or Cd2+ affected cell response to GH by enhancing (Cu2+) or inhibiting (Cd2+) the phosphorylation of JAK2 and STAT5. Heavy metals induced the activation of the MAP kinase p38, and pre-exposure to Hg2+ or Cu2+ followed by GH enhanced the effect of metal alone. Image analysis of fura2-loaded cells indicated that pre-treatment with Hg2+ prior to GH produced a considerable increase of the [Ca2+]i variation produced by either element, while using Cu2+ or Cd2+ the result was similar but much weaker. Data suggest that heavy metals interfere with GH as follows: Hg2+ is nearly ineffective on JAK/STAT and strongly synergistic on Ca2+ signaling; Cu2+ is activatory on JAK/STAT and slightly activatory on Ca2+; Cd2+ is strongly inhibitory on JAK/STAT and slightly activatory on Ca2+; heavy metals could partially activate STAT via p38 independently from GH interaction.Published online: March 2005  相似文献   

16.
In this study, we demonstrated a highly sensitive, selective, and reversible chemosensor for Hg2+ determination. This chemosensor was synthesized by direct condensation of thymin‐1‐ylacetic acid with zinc tetraaminoporphyrin, which has a porphyrin core as the fluorophore and four thymine (T) moieties as the specific interaction sites for Hg2+. The probe (4T‐ZnP) exhibited split Soret bands with a small peak at 408 nm and a strong band at 429 nm in a dimethylformamide/H2O (7/3, v/v) mixed solvent as well as a strong emission band at 614 nm. Upon the addition of Hg2+, the probe displayed strong fluorescence quenching due to the formation of T‐Hg2+‐T complexes. With the aid of the fluorescence spectrometer, the chemosensor in the dimethylformamide/H2O (7/3, v/v) mixed solvent (0.3 μM) exhibited a detection limit of 6.7 nM. Interferences from other common cations, such as Co2+, K+, Sn2+, Zn2+, Cu2+, Ni2+, Mn2+, Na+, Ca2+, Mg2+, Pb2+, and Cd2+, associated with Hg2+ analysis were effectively inhibited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A dual‐function fluorescent probe (Probe 1 ) was developed for discriminative detection of Hg2+ and N2H4. Probe 1 could discriminatively detect Hg2+ and N2H4 through two different reaction sites, with the mechanism for Probe 1 for Hg2+ depending on a desulfurization reaction and for N2H4 depending on the Schiff‐base reaction. N2H4 had minimal effect on Hg2+ detection in dimethyl sulfoxide (DMSO)/H2O solution, but Hg2+ could interfere with N2H4 detection in DMSO/buffer solution. Different concentrations of Hg2+ and N2H4 resulted in different blue shades of Probe 1 test strips, and the shade of blue was different with the same concentration of Hg2+ or N2H4, as observed under ultraviolet light at 365 nm wavelength.  相似文献   

18.
Light induced proton efflux in intact cells ofAnabaena flos-aquae is inhibited by the heavy metals Hg2+ and Cd2+. Furthermore, Hg2+ and Cd2+ reduced the14CO2 fixation, oxygen evolution and carbonic anhydrase activity responsible for H+ efflux.  相似文献   

19.
20.
The structures of thiacalix[2]thianthrene, p-tert-butylthiacalix[2]thianthrene and their complexes with Zn2+, Cd2+ and Hg2+ were obtained using B3LYP/LanL2DZ and HF/LanL2DZ calculations. The structures of the most stable conformers of thiacalix[2]thianthrene and p-tert-butylthiacalix[2]thianthrene optimized at either the B3LYP/LanL2DZ or HF/LanL2DZ level are in good agreement with their corresponding X-ray crystallographic structures. The binding energies of cations, Zn2+, Cd2+ and Hg2+ to thiacalix[2]thianthrene and to p-tert-butylthiacalix[2]thianthrene conformers, and the thermodynamic properties of their associations were obtained. The relative selectivities of both thiacalix[2]thianthrene and thiacalix[2]thianthrene conformer are in same order: Zn2+ >> Hg2+ > Cd2+.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号