首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in multiple cellular functions, such as cell metabolism, proliferation and survival. Many previous studies have shown that mTOR regulates both neuroprotective and neuroregenerative functions in trauma and various diseases in the central nervous system (CNS). Recently, we reported that inhibition of mTOR using rapamycin reduces neural tissue damage and locomotor impairment after spinal cord injury (SCI) in mice. Our results demonstrated that the administration of rapamycin at four hours after injury significantly increases the activity of autophagy and reduces neuronal loss and cell death in the injured spinal cord. Furthermore, rapamycin-treated mice show significantly better locomotor function in the hindlimbs following SCI than vehicle-treated mice. These findings indicate that the inhibition of mTOR signaling using rapamycin during the acute phase of SCI produces neuroprotective effects and reduces secondary damage at lesion sites. However, the role of mTOR signaling in injured spinal cords has not yet been fully elucidated. Various functions are regulated by mTOR signaling in the CNS, and multiple pathophysiological processes occur following SCI. Here, we discuss several unresolved issues and review the evidence from related articles regarding the role and mechanisms of the mTOR signaling pathway in neuroprotection and neuroregeneration after SCI.  相似文献   

2.
The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in multiple cellular functions, such as cell metabolism, proliferation and survival. Many previous studies have shown that mTOR regulates both neuroprotective and neuroregenerative functions in trauma and various diseases in the central nervous system (CNS). Recently, we reported that inhibition of mTOR using rapamycin reduces neural tissue damage and locomotor impairment after spinal cord injury (SCI) in mice. Our results demonstrated that the administration of rapamycin at four hours after injury significantly increases the activity of autophagy and reduces neuronal loss and cell death in the injured spinal cord. Furthermore, rapamycin-treated mice show significantly better locomotor function in the hindlimbs following SCI than vehicle-treated mice. These findings indicate that the inhibition of mTOR signaling using rapamycin during the acute phase of SCI produces neuroprotective effects and reduces secondary damage at lesion sites. However, the role of mTOR signaling in injured spinal cords has not yet been fully elucidated. Various functions are regulated by mTOR signaling in the CNS, and multiple pathophysiological processes occur following SCI. Here, we discuss several unresolved issues and review the evidence from related articles regarding the role and mechanisms of the mTOR signaling pathway in neuroprotection and neuroregeneration after SCI.  相似文献   

3.

Background

Spinal cord injury is a major cause of long-term disability and has no current clinically accepted treatment. Leptin, an adipocyte-derived hormone, is best known as a regulator of food intake and energy expenditure. Interestingly, several studies have demonstrated that leptin has significant effects on proliferation and cell survival in different neuropathologies. Here, we sought to evaluate the role of leptin after spinal cord injury.

Findings

Based on its proposed neuroprotective role, we have evaluated the effects of a single, acute intraparenchymal injection of leptin in a clinically relevant animal model of spinal cord injury. As determined by quantitative Real Time-PCR, endogenous leptin and the long isoform of the leptin receptor genes show time-dependent variations in their expression in the healthy and injured adult spinal cord. Immunohistochemical analysis of post-injury tissue showed the long isoform of the leptin receptor expression in oligodendrocytes and, to a lesser extent, in astrocytes, microglia/macrophages and neurons. Moreover, leptin administered after spinal cord injury increased the expression of neuroprotective genes, reduced caspase-3 activity and decreased the expression of pro-inflammatory molecules. In addition, histological analysis performed at the completion of the study showed that leptin treatment reduced microglial reactivity and increased caudal myelin preservation, but it did not modulate astroglial reactivity. Consequently, leptin improved the recovery of sensory and locomotor functioning.

Conclusions

Our data suggest that leptin has a prominent neuroprotective and anti-inflammatory role in spinal cord damage and highlights leptin as a promising therapeutic agent.  相似文献   

4.
Apoptosis has been widely reported to be involved in the pathogenesis associated with spinal cord injury (SCI). Recently, autophagy has also been implicated in various neuronal damage models. However, the role of autophagy in SCI is still controversial and its interrelationship with apoptosis remains unclear. Here, we used an in vitro SCI model to observe a time-dependent induction of autophagy and apoptosis. Mechanical injury induced autophagy markers such as LC3 lipidation, LC3II/LC3I conversion, and Beclin-1expression. Injured neurons showed decreased cell viability and increased apoptosis. To elucidate the effect of autophagy on apoptosis, the mechanically-injured neurons were treated with the mTOR inhibitor rapamycin and 3-methyl adenine (3-MA), which are known to regulate autophagy positively and negatively, respectively. Rapamycin-treated neurons showed the highest level of cell viability and lowest level of apoptosis among the injured neurons and those treated with 3-MA showed the reciprocal effect. Notably, rapamycin-treated neurons exhibited slightly reduced Bax expression and significantly increasedBcl-2 expression. Furthermore, by plasmid transfection, we showed that Beclin-1-overexpressing neuronal cells responded to mechanical injury with greater LC3II/LC3I conversion and cell viability, lower levels of apoptosis, higher Bcl-2 expression, and unaltered Bax expression as compared to vector control cells. Beclin-1-knockdown neurons showed almost the opposite effects. Taken together, our results suggest that autophagy may serve as a protection against apoptosis in mechanically-injured spinal cord neurons. Targeting mTOR and/or enhancing Beclin-1 expression might be alternative therapeutic strategies for SCI.  相似文献   

5.
The oxidative mechanisms of injury-induced damage of neurons within the spinal cord are not very well understood. We used a model of T8-T9 spinal cord injury (SCI) in the rat to induce neuronal degeneration. In this spinal cord injury model, unilateral avulsion of the spinal cord causes oxidative stress of neurons. We tested the hypothesis that apurinic/apyrimidinic endonuclease (or redox effector factor-1, APE/Ref-1) regulates this neuronal oxidation mechanism in the spinal cord region caudal to the lesion, and that DNA damage is an early upstream signal. The embryonic neural stem cell therapy significantly decreased DNA-damage levels in both study groups - acutely (followed up to 7 days after SCI), and chronically (followed up to 28 days after SCI) injured animals. Meanwhile, mRNA levels of APE/Ref-1 significantly increased after embryonic neural stem cell therapy in acutely and chronically injured animals when compared to acute and chronic sham groups. Our data has demonstrated that an increase of APE/Ref-1 mRNA levels in the caudal region of spinal cord strongly correlated with DNA damage after traumatic spinal cord injury. We suggest that DNA damage can be observed both in lesional and caudal regions of the acutely and chronically injured groups, but DNA damage is reduced with embryonic neural stem cell therapy.  相似文献   

6.
Autophagy is an intracellular catabolic mechanism that maintains the balance of proteins, lipids and aging organelles. 3-Methyladenine (3-MA) is a selective inhibitor of autophagy, whereas rapamycin, an antifungal agent, is a specific inducer of autophagy, inhibiting the protein mammalian target of rapamycin. In the present study, we examined the role of autophagy, inhibited by 3-MA and enhanced by rapamycin, in a model of acute spinal cord injury in rats. We found that rapamycin could significantly increase the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin1 at the injury site. At the same time, the number of neurons and astrocytes with LC3 positive in the spinal cord was upregulated with time. In addition, administration of rapamycin produced an increase in the Basso, Beattie and Bresnahan scores of injured rats, indicating high recovery of locomotor function. Furthermore, expression of the proteins Bcl-2 and Bax was upregulated and downregulated, respectively. By contrast, the results for rats treated with 3-MA, which inhibits autophagy, were the opposite of those seen with the rapamycin-treated rats. These results show that induction of autophagy can produce neuroprotective effects in acute spinal cord injury in rats via inhibition of apoptosis.  相似文献   

7.
Autophagy is an intracellular catabolic mechanism for the degradation of cytoplasmic constituents in the autophagosomal–lysosomal pathway. This mechanism plays an important role in homeostasis and it is defective in certain diseases. Preceding studies have revealed that autophagy is developing as an important moderator of pathological responses associated to spinal cord injury (SCI) and plays a crucial role in secondary injury initiating a progressive degeneration of the spinal cord. Thus, based on this evidence in this study, we used two different selective inhibitors of mTOR activity to explore the functional role of autophagy in an in vivo model of SCI as well as to determine whether the autophagic process is involved in spinal cord tissue damage. We treated animals with a novel synthetic inhibitor temsirolimus and with a dual mTORC1 and mTORC2 inhibitor KU0063794 matched all with the well-known inhibitor of mTOR the rapamycin. Our results demonstrated that mTOR inhibitors could regulate the neuroinflammation associated to SCI and the results that we obtained evidently demonstrated that rapamycin and temsirolimus significantly diminished the expression of iNOS, COX2, GFAP, and re-established nNOS levels, but the administration of KU0063794 is able to blunt the neuroinflammation better than rapamycin and temsirolimus. In addition, neuronal loss and cell mortality in the spinal cord after injury were considerably reduced in the KU0063794-treated mice. Accordingly, taken together our results denote that the administration of KU0063794 produced a neuroprotective function at the lesion site following SCI, representing a novel therapeutic approach after SCI.  相似文献   

8.
Inflammation has been known to play an important role in the pathogenesis after spinal cord injury (SCI). Microglia are activated after injury and produce a variety of proinflammatory factors such as tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and reactive oxygen species leading to apoptosis of neurons and oligodendrocytes. In this study, we examined the neuroprotective effects of total ethanol extract of Scutellaria baicalensis (EESB) , after SCI. Using primary microglial cultures, EESB treatment significantly inhibited lipopolysaccharide-induced expression of such inflammatory mediators as tumor necrosis factor-α, IL-1β, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase. Furthermore, reactive oxygen species and nitric oxide production were significantly attenuated by EESB treatment. For in vivo study, rats that had received a moderate spinal cord contusion injury at T9 received EESB orally at a dose of 100 mg/kg. EESB inhibited expression of proinflammatory factors and protein carbonylation and nitration after SCI. EESB also inhibited microglial activation at 4 h after injury. Furthermore, EESB significantly inhibited apoptotic cell death of neurons and oligodendrocytes and improved functional recovery after SCI. Lesion cavity and myelin loss were also reduced following EESB treatment. Thus, our data suggest that EESB significantly improve functional recovery by inhibiting inflammation and oxidative stress after injury.  相似文献   

9.
脊髓损伤的治疗与康复一直是医学领域的重大难题,尤其是在改善损伤的神经功能方面进展甚微。继发性损伤是造成脊髓损伤后神经功能障碍的主要原因,炎症反应是继发性损伤阶段最重要的病理过程。急性期通过抑制神经炎症来减轻继发性损伤被认为可减轻神经功能损害而达到神经保护作用。炎性小体是一类蛋白质复合体,由模式识别受体中的NLRs家族和PHYIN家族的受体蛋白质作为主要框架组装并命名,常见的炎性小体包括NLRP1、NLRP3、NLRC4(IPAF)、AIM2等。在感染或受到损伤刺激时,炎性小体在细胞质内组装,并激活促炎症蛋白酶胱天蛋白酶1(caspase-1),活化的胱天蛋白酶1一方面促进促炎症细胞因子IL-1β和IL-18的前体成熟和分泌,另一方面介导细胞焦亡。细胞焦亡以细胞肿胀破裂并释放细胞内容物为特征,是在炎症和应激的病理条件下诱导的程序性细胞死亡方式。促炎症细胞因子和焦亡释放的胞内物质都可作为促炎信号引发炎症反应。近期发现,炎性小体通过诱导促炎因子释放以及介导细胞焦亡等途径, 参与激活脊髓损伤后的炎症级联反应,加重继发性神经炎症。靶向抑制炎性小体的激活可减轻炎症反应,促进神经细胞存活,达到神经保护作用。因此,炎性小体有望成为脊髓损伤治疗的新靶点。本文拟从炎性小体的结构及其在脊髓损伤中的作用、激活机制和治疗前景进行综述,以期为后续研究提供思路。  相似文献   

10.
(1) Phase II enzyme inducer is a kind of compound which can promote the expression of antioxidative enzymes through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Recently, it has been reported that these compounds show neuroprotective effect via combating oxidative stress. The purpose of this study is to determine whether phase II enzyme inducers have neuroprotective effects on traumatic spinal cord injury. (2) An organotypic spinal cord culture system was used, Phase II enzyme inducers were added to culture medium for 1 week, motor neurons were counted by SMI-32 staining, glutamate, Nrf2, and Heme oxygenase-1(HO-1) mRNA were tested. (3) This study showed motor neuron loss within 1 week in culture. After 1 week in culture, the system was stable. Moreover, Glutamate was increased when in culture 48 h and decreased after 1 week in culture. There was no significant change between 1 and 4 weeks in culture. Necrotic motor neuron and damaged mitochondrial were observed in culture 48 h. Furthermore, phase II enzyme inducers: tert-butyhydroquinone (t-BHQ), 3H-1,2-dithiole-3-thione (D3T), and 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT) were shown to promote motor neuron survival after dissection, it was due to increasing Nrf2 and HO-1 mRNA expression and protecting mitochondrial not due to decreasing glutamate level. (4) The loss of motor neuron due to dissection can mimic severe traumatic spinal cord injury. These results demonstrate that glutamate excitotoxicity and the damage of mitochondrial is possibly involve in motor neuron death after traumatic spinal cord injury and phase II enzyme inducers show neuroprotective potential on motor neuron survival in traumatic spinal cord injury in vitro.  相似文献   

11.
The effect of GDNF on long-term cultured spinal cord neurons was studied. GDNF could promote spinal cord neurons survival after 7 d or 14 d culture by MTT assay. The effect of GDNF on growth cones, neuron soma magnitude, neurite length and spines formulation of spinal cord neurons in cell culture was observed by phase microscopy, Nissl stain and NSE immunocytochemistry stain. The results indicated that GDNF had significant trophic effects on long-term cultured spinal cord neurons.  相似文献   

12.
本文研究了GDNF对体外培养各个时期的脊髓神经元的作用。通过MTT法检测GDNF对脊髓神经元存活率的影响,发现GDNF能促进培养7天及14天的神经元存活。 通过活体观察、尼氏染色、NSE免疫细胞化学染色观察GDNF对脊髓神经元生长锥数目、胞体大小、突起长度及分枝、侧棘形成的影响,发现GDNF对体外培养1—3周的脊髓神经元有明显的营养作用。  相似文献   

13.
14.
脊髓损伤是一种严重的疾病,目前尚无有效的治疗方法。炎症反应在脊髓损伤后数h内开始,在几d内达到峰值,并可能持续数y。减轻脊髓损伤后的炎症反应是重要的治疗策略之一。丁酸盐与β-羟基丁酸盐是2种密切相关的物质,2者结构相似,仅有1个羟基不同,因在多种疾病中显现出良好的抗炎特性而引起广泛关注。近期有基础研究发现,丁酸盐与β-羟基丁酸盐可以抑制NF-κB/ NLRP3炎性小体信号通路活性,降低促炎因子表达;或通过增加抗氧化分子的水平,减轻脊髓损伤后炎症反应。因此,丁酸盐与β-羟基丁酸盐可能是脊髓损伤后有前景的治疗方法。本文拟对丁酸盐与β-羟基丁酸盐的结构与产生、在脊髓损伤中发挥抗炎作用的机制、治疗前景进行综述,以期为该领域科研人员提供理论参考。  相似文献   

15.
In this study, we examined the neuroprotective effects and anti‐inflammatory properties of Dl‐3‐n‐butylphthalide (NBP) in Sprague‐Dawley (SD) rats following traumatic spinal cord injury (SCI) as well as microglia activation and inflammatory response both in vivo and in vitro. Our results showed that NBP improved the locomotor recovery of SD rats after SCI an significantly diminished the lesion cavity area of the spinal cord, apoptotic activity in neurons, and the number of TUNEL‐positive cells at 7 days post‐injury. NBP inhibited activation of microglia, diminished the release of inflammatory mediators, and reduced the upregulation of microglial TLR4/NF‐κB expression at 1 day post‐injury. In a co‐culture system with BV‐2 cells and PC12 cells, NBP significantly reduced the cytotoxicity of BV‐2 cells following lipopolysaccharide (LPS) stimulation. In addition, NBP reduced the activation of BV‐2 cells, diminished the release of inflammatory mediators, and inhibited microglial TLR4/NF‐κB expression in BV‐2 cells. Our findings demonstrate that NBP may have neuroprotective and anti‐inflammatory properties in the treatment of SCI by inhibiting the activation of microglia via TLR4/NF‐κB signalling.  相似文献   

16.
Ischemia–reperfusion (I/R)-induced spinal cord injury can cause apoptotic damage and subsequently act as a blood–spinal cord barrier damage. MicroRNAs (miRNAs) contributed to the process of I/R injury by regulating their target mRNAs. miR-199a-5p is involved in brain and heart I/R injury; however, its function in the spinal cord is not yet completely clarified. In this study, we investigated the role of miR-199a-5p on spinal cord I/R via the endothelin-converting enzyme 1, especially the apoptosis pathway. In the current study, the rat spinal cord I/R injury model was established, and the Basso Beattie Bresnahan scoring, Evans blue staining, HE staining, and TUNEL assay were used to assess the I/R-induced spinal cord injury. The differentially expressed miRNAs were screened using microarray. miR-199a-5p was selected by unsupervised hierarchical clustering analysis. The dual-luciferase reporter assay was used for detecting the regulatory effects of miR-199a-5p on ECE1. In addition, neuron expression was detected by immunostaining assay, while the expressions of p-ERK, ERK, p-JNK, JNK, caspase-9, Bcl-2, and ECE1 were evaluated by Western blot. The results indicated the successful establishment of the I/R-induced spinal cord injury model; the I/R induced the damage to the lower limb motor. Furthermore, 18 differentially expressed miRNAs were detected in the I/R group compared to the sham group, and miR-199a-5p protected the rat spinal cord injury after I/R. Moreover, miR-199a-5p negatively regulated ECE1, and silencing the ECE1 gene also protected the rat spinal cord injury after I/R. miR-199a-5p or silencing of ECE1 also regulated the expressions of caspase-9, Bcl-2, p-JNK, p-ERK, and ECE1 in rat spinal cord injury after I/R. Therefore, we demonstrated that miR-199a-5p might protect the spinal cord against I/R-induced injury by negatively regulating the ECE1, which could aid in developing new therapeutic strategies for I/R-induced spinal cord injury.  相似文献   

17.
Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4-L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the microglial reaction was significantly attenuated. The results indicate a therapeutic potential for NAC and ALC in the early treatment of traumatic spinal cord injury.  相似文献   

18.
Previous studies indicated that nitric oxide (NO) is involved in secondary damage of spinal cord injury (SCI), which worsens the primary physical injury to the central nervous systems. Recently, nitric oxide synthase interacting protein (NOSIP) has been identified to interact with neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase by inhibiting the NO production. However, its expression and function after a central nervous system injury remains unclear. In this study, we examined the expression and cellular localization of NOSIP in the spinal cord of an adult rat. Western blot analysis indicated that NOSIP protein levels increased at day1 post-injury and peaked at day 14. Double immunofluorescence staining showed that NOSIP was primarily expressed in neurons and glial cells in the intact spinal cord. Interestingly, this study also showed that the expression of NOSIP significantly increased in astrocytes after injury. Furthermore, injury-induced expression of NOSIP was co-expressed with proliferating cell nuclear antigen (PCNA) positive astrocytes after injury. We also showed the NOSIP was co-localized with nNOS in gray matter and white matter after SCI. All these data taken together suggested that NOSIP may play an important roles in astrogliogenesis after a spinal cord injury.  相似文献   

19.
Spy1, as a member of the Speedy/RINGO family and a novel activator of cyclin-dependent kinases, was shown to promote cell cycle progression and cell survival in response to DNA damage. While its expression and roles in nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve injury model in adult rats and studied the dynamic changes of Spy1 expression in lumbar spinal cord. Temporally, Spy1 expression was increased shortly after sciatic nerve crush and peaked at day 2. Spatially, Spy1 was widely expressed in the lumbar spinal cord including neurons and glial cells. While after injury, Spy1 expression was increased predominantly in astrocytes and microglia, which were largely proliferated. Moreover, there was a concomitant up-regulation of CDK2 activity and down-regulation of p27. Collectively, we hypothesized peripheral nerve injury induced an up-regulation of Spy1 in lumbar spinal cord, which was associated with glial proliferation. Ye Huang and Yonghua Liu contributed equally to this work.  相似文献   

20.
The family of interleukin (IL)-6 like cytokines plays an important role in the neuroinflammatory response to injury by regulating both neural as well as immune responses. Here, we show that expression of the IL-6 family member oncostatin M (OSM) and its receptor is upregulated after spinal cord injury (SCI). To reveal the relevance of increased OSM signaling in the pathophysiology of SCI, OSM was applied locally after spinal cord hemisection in mice. OSM treatment significantly improved locomotor recovery after mild and severe SCI. Improved recovery in OSM-treated mice was associated with a reduced lesion size. OSM significantly diminished astrogliosis and immune cell infiltration. Thus, OSM limits secondary damage after CNS trauma. In vitro viability assays demonstrated that OSM protects primary neurons in culture from cell death, suggesting that the underlying mechanism involves direct neuroprotective effects of OSM. Furthermore, OSM dose-dependently promoted neurite outgrowth in cultured neurons, indicating that the cytokine plays an additional role in CNS repair. Indeed, our in vivo experiments demonstrate that OSM treatment increases plasticity of serotonergic fibers after SCI. Together, our data show that OSM is produced at the lesion site, where it protects the CNS from further damage and promotes recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号