首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the development of an intravascular magnetomotive optical coherence tomography (IV‐MM‐OCT) system used with targeted protein microspheres to detect early‐stage atherosclerotic fatty streaks/plaques. Magnetic microspheres (MSs) were injected in vivo in rabbits, and after 30 minutes of in vivo circulation, excised ex vivo rabbit aorta samples specimens were then imaged ex vivo with our prototype IV‐MM‐OCT system. The alternating magnetic field gradient was provided by a unique pair of external custom‐built electromagnetic coils that modulated the targeted magnetic MSs. The results showed a statistically significant MM‐OCT signal from the aorta samples specimens injected with targeted MSs.

Representative magnetomotive signal (green) using targeted and non‐targeted magnetomotive microspheres in atherosclerotic diseased rabbit aortas.  相似文献   


2.
Multi‐modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non‐invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation.

In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800‐2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation.  相似文献   


3.
Early detection of cutaneous squamous cell carcinoma (cSCC) can enable timely therapeutic and preventive interventions for patients. In this study, in vivo nonlinear optical imaging (NLOI) based on two‐photon excitation fluorescence (TPEF) and second harmonic generation (SHG), was used to non‐invasively detect microscopic changes occurring in murine skin treated topically with 7,12‐dimethylbenz(a)anthracene (DMBA). The optical microscopic findings and the measured TPEF‐SHG index show that NLOI was able to clearly detect early cytostructural changes in DMBA treated skin that appeared clinically normal. This suggests that in vivo NLOI could be a non‐invasive tool to monitor early signs of cSCC.

In vivo axial NLOI scans of normal murine skin (upper left), murine skin with preclinical hyperplasia (upper right), early clinical murine skin lesion (lower left) and late or advanced murine skin lesion (lower right).  相似文献   


4.
Raman spectroscopy has becoming a practical tool for rapid in vivo tissue diagnosis. This paper provides an overview on the latest development of real‐time in vivo Raman systems for cancer detection. Instrumentation, data handling, as well as oncology applications of Raman techniques were covered. Optic fiber probes designs for Raman spectroscopy were discussed. Spectral data pre‐processing, feature extraction, and classification between normal/benign and malignant tissues were surveyed. Applications of Raman techniques for clinical diagnosis for different types of cancers, including skin cancer, lung cancer, stomach cancer, oesophageal cancer, colorectal cancer, cervical cancer, and breast cancer, were summarized.

Schematic of a real‐time Raman spectrometer for skin cancer detection. Without correction, the image captured on CCD camera for a straight entrance slit has a curvature. By arranging the optic fiber array in reverse orientation, the curvature could be effectively corrected.  相似文献   


5.
Over the past years it had been demonstrated that multimodal imaging combining the nonlinear modalities coherent anti‐Stokes Raman scattering (CARS), two‐photon excited auto‐fluorescence (TPEF) and second harmonic generation (SHG) show a great potential for tissue diagnosis and tumor identification. To extend the applicability of this multimodal imaging approach for in‐vivo tissue screening of difficult to access body regions the development of suitable fiber optic probes is required. Here we report about a novel CARS imaging fiber probe consisting of 10,000 coherent light guiding elements preserving the spatial relationship between the entrance and the output of the fiber. Therefore the scanning procedure can be shifted from the distal to the proximal end of the fiber probe and no moving parts or driving current are required to realize in‐vivo CARS endoscopy.

Back scattered CARS image of rabbit aorta with plaques (white) using a laser scanning microscope and an imaging fiber.  相似文献   


6.
A study of polarized light transport in scattering media exhibiting directional anisotropy or linear birefringence is presented in this paper. Novel theoretical and experimental methodologies for the quantification of birefringent alignment based on out‐of‐plane polarized light transport are presented here. A polarized Monte Carlo model and a polarimetric imaging system were devised to predict and measure the impact of birefringence on an impinging linearly polarized light beam. Ex‐vivo experiments conducted on bovine tendon, a biological sample consisting of highly packed type I collagen fibers with birefringent property, showed good agreement with the analytical results.

Top view geometry of the in‐plane ( a ) and the out‐of‐plane ( b ) detection. Letter C indicates the location of the detection arm.  相似文献   


7.
Mechanisms of renal autoregulation generate oscillations in arterial blood flow at several characteristic frequencies. Full‐field laser speckle flowmetry provides a real‐time imaging of superficial blood microcirculation. The possibility to detect changes in oscillatory dynamics is an important issue in biomedical applications. In this paper we show how laser power density affects quality of the recorded signal and improves detectability of temporal changes in microvascular perfusion.

  相似文献   


8.
In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser‐Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue‐differentiation performance of the LIBS approach.

Plasma mediated laser tissue ablation.  相似文献   


9.
Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO2) in myocardium, using oxygen‐dependent quenching of phosphorescence and delayed fluorescence of porphyrins, by means of Monte Carlo simulations and ex vivo experiments. Oxyphor G2 (microvascular PO2) was excited at 442 nm and 632 nm and protoporphyrin IX (mitochondrial PO2) at 510 nm. This resulted in catchment depths of 161 (86) µm, 350 (307) µm and 262 (255) µm respectively, as estimated by Monte Carlo simulations and ex vivo experiments (brackets). The feasibility to detect changes in oxygenation within separate anatomical compartments is demonstrated in rat heart in vivo.

Schematic of ex vivo measurements.  相似文献   


10.
Non‐invasive and quantitative estimations for the delineation of sub‐surface tumor margins could greatly aid in the early detection and monitoring of the morphological appearances of tumor growth, ensure complete tumor excision without the unnecessary sacrifice of healthy tissue, and facilitate post‐operative follow‐up for recurrence. In this study, a high‐speed, non‐invasive, and ultra‐high‐resolution spectral domain optical coherence tomography (UHR‐SDOCT) imaging platform was developed for the quantitative measurement of human sub‐surface skin mass. With a proposed robust, semi‐automatic analysis, the system can rapidly quantify lesion area and shape regularity by an en‐face‐oriented algorithm. Various sizes of nylon sutures embedded in pork skin were used first as a phantom to verify the accuracy of our algorithm, and then in vivo, feasibility was proven using benign human angiomas and pigmented nevi. Clinically, this is the first step towards an automated skin lesion measurement system.

In vivo optical coherence tomography (OCT) image of angioma (A). Thin red arrows point to a blood vessel (BV).  相似文献   


11.
Biological tissues are very strong light‐scattering media. As a consequence, current medical imaging devices do not allow deep optical imaging unless invasive techniques are used. Acousto‐optic imaging is a light‐ultrasound coupling technique that takes advantage of the ballistic propagation of ultrasound in biological tissues to access optical contrast with a millimeter resolution. We have developed a photorefractive‐crystal‐based system that performs self‐adaptive wavefront holography and works within the optical therapeutic window. As it works at an appropriate wavelength range for biological tissues imaging, it was tested on ex vivo liver samples containing tumors as a pre‐clinical study. Optical contrast was obtained even if acoustical one was not significant.

Ultrasound image (left) and acousto‐optic image (right) of a liver biopsy with tumors. Acousto‐optic imaging exhibits tumors that are not detected through ultrasound.  相似文献   


12.
Barrett's oesophagus is a condition characterized by a change in the lining of the oesophagus that markedly increases the risk of adenocarcinoma. We demonstrate the first site‐matched application of Brillouin microscopy, Raman microscopy and FTIR micro‐spectroscopic imaging to ex‐vivo epithelial tissue – Barrett's oesophagus. The mechanical and chemical characters of the epithelium were assessed in histological sections from a patient subjected to endoscopic oesophageal biopsy. Previous studies have shown that both these properties change within the oesophageal wall, owing to the presence of distinct cellular and extracellular constituents which are putatively affected by oesophageal cancer. Brillouin microscopy enables maps of elasticity of the epithelium to be obtained, whilst Raman and FTIR imaging provide ’chemical images' without the need for labelling or staining. This site‐matched approach provides a valuable platform for investigating the structure, biomechanics and composition of complex heterogeneous systems. A combined Brillouin‐Raman device has potential for in‐vivo diagnosis of pathology.

First application of site‐matched micro Brillouin, Raman and FTIR spectroscopic imaging to epithelial tissue in Barrett's oesophagus  相似文献   


13.
Polarimetric measurements in multiphoton microscopy can reveal information about the local molecular order of a sample. However, the presence of a dichroic through which the excitation beam propagates will generally scramble its polarization. We propose a simple scheme whereby a second properly‐oriented compensation dichroic is used to negate any alteration regardless of the wavelength and the initial polarization. We demonstrate how this robust and rapid approach simplifies polarimetric measurements in second‐harmonic generation, two‐photon excited fluorescence and coherent anti‐Stokes Raman scattering.

Illustration of the polarization maintaining strategy with the compensating dichroic oriented such that its s‐ and p‐axes are interchanged with these of the primary dichroic.  相似文献   


14.
Unintentional surgical damage to nerves is mainly due to poor visualization of nerve tissue relative to adjacent structures. Multispectral photoacoustic tomography can provide chemical information with specificity and ultrasonic spatial resolution with centimeter imaging depth, making it a potential tool for noninvasive neural imaging. To implement this label‐free imaging approach, a multispectral photoacoustic tomography platform was built. Imaging depth and spatial resolution were characterized. In vivo imaging of the femoral nerve that is 2 mm deep in a nude mouse was performed. Through multivariate curve resolution analysis, the femoral nerve was discriminated from the femoral artery and chemical maps of their spatial distributions were generated.

The femoral nerve was discriminated from the femoral artery by multivariate curve resolution analysis.  相似文献   


15.
A novel hyperspectral confocal microscopy method to separate different cell populations in a co‐culture model is presented here. The described methodological and instrumental approach allows discrimination of different cell types using a non‐invasive, label free method with good accuracy with a single cell resolution. In particular, melanoma cells are discriminated from HaCaT cells by hyperspectral confocal imaging, principal component analysis and optical frequencies signing, as confirmed by fluorescence labelling cross check. The identification seems to be quite robust to be insensitive to the cellular shape within the studied samples, enabling to separate cells according to their cytotype down to a single cell sensitivity.

Set of hyperspectral images of melanoma‐keratinocytes co‐culture model (left), score plot of principal component analysis and spectral analysis of principal components coefficients (center), label‐free spectral identification of cell populations (right).  相似文献   


16.
In vivo imaging of cerebral vasculature is highly vital for clinicians and medical researchers alike. For a number of years non‐invasive optical‐based imaging of brain vascular network by using standard fluorescence probes has been considered as impossible. In the current paper controverting this paradigm, we present a robust non‐invasive optical‐based imaging approach that allows visualize major cerebral vessels at the high temporal and spatial resolution. The developed technique is simple to use, utilizes standard fluorescent dyes, inexpensive micro‐imaging and computation procedures. The ability to clearly visualize middle cerebral artery and other major vessels of brain vascular network, as well as the measurements of dynamics of blood flow are presented. The developed imaging approach has a great potential in neuroimaging and can significantly expand the capabilities of preclinical functional studies of brain and notably contribute for analysis of cerebral blood circulation in disorder models.

An example of 1 × 1.5 cm color‐coded image of brain blood vessels of mouse obtained in vivo by transcranial optical vascular imaging (TOVI) approach through the intact cranium.  相似文献   


17.
This paper presents a novel instrument for biosciences, useful for studies of moving embryos. A dual sequential imaging/measurement channel is assembled via a closed‐loop tracking architecture. The dual channel system can operate in two regimes: (i) single‐point Doppler signal monitoring or (ii) fast 3‐D swept source OCT imaging. The system is demonstrated for characterizing cardiac dynamics in Drosophila melanogaster larva. Closed loop tracking enables long term in vivo monitoring of the larvae heart without anesthetic or physical restraint. Such an instrument can be used to measure subtle variations in the cardiac behavior otherwise obscured by the larvae movements.

A fruit fly larva (top) was continuously tracked for continuous remote monitoring. A heartbeat trace of freely moving larva (bottom) was obtained by a low coherence interferometry based doppler sensing technique.  相似文献   


18.
Rather than simply acting as a photographic camera capturing two‐dimensional (x, y) intensity images or a spectrometer acquiring spectra (λ), a hyperspectral imager measures entire three‐dimensional (x, y, λ) datacubes for multivariate analysis, providing structural, molecular, and functional information about biological cells or tissue with unprecedented detail. Such data also gives clinical insights for disease diagnosis and treatment. We summarize the principles underpinning this technology, highlight its practical implementation, and discuss its recent applications at microscopic to macroscopic scales.

Datacube acquisition strategies in hyperspectral imaging x, y, spatial coordinates; λ, wavelength.  相似文献   


19.
In vivo microscopy has recently become a gold standard in lung immunology studies involving small animals, largely benefiting from the democratization of multiphoton microscopy allowing for deep tissue imaging. This technology represents currently our only way of exploring the lungs and inferring what happens in human respiratory medicine. The interest of lung in vivo microscopy essentially relies upon its relevance as a study model, fulfilling physiological requirements in comparison with in vitro and ex vivo experiments. However, strategies developed in order to overcome movements of the thorax caused by breathing and heartbeats remain the chief drawback of the technique and a major source of invasiveness. In this context, minimizing invasiveness is an unavoidable prerequisite for any improvement of lung in vivo microscopy. This review puts into perspective the main techniques enabling lung in vivo microscopy, providing pros and cons regarding invasiveness.

  相似文献   


20.
Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three‐dimensional detection of pathophysiological parameters within skin. It was recently shown that single‐wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three‐dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15–125 MHz. We employ a per‐pulse tunable laser to inherently co‐register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label‐free visualization of physiological biomarkers in skin in vivo.

Cross‐sectional optoacoustic image of human skin in vivo. The epidermal layer is characterized by melanin absorption. A vascular network runs through the dermal layer, exhibiting blood oxygenation values of 50–90%. All scale bars: 250 µm  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号