首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) are an ideal adult stem cell with capacity for self‐renewal and differentiation with an extensive tissue distribution. The present study evaluates the therapeutic effects of bone marrow mesenchymal stem cells (BM‐MSCs) or adipose‐derived mesenchymal stem cells (AD‐MSCs) against the development of methotrexate (MTX)‐induced cardiac fibrosis versus dexamethasone (DEX). Rats were allocated into five groups; group 1, received normal saline orally; group 2, received MTX (14 mg/kg/week for 2 weeks); groups 3 and 4, treated once with 2 × 10 6 cells of MTX + BM‐MSCs and MTX + AD‐MSCs, respectively; and group 5, MTX + DEX (0.5 mg/kg, for 7 days, P.O.). MTX induced cardiac fibrosis as marked changes in oxidative biomarkers and elevation of triglyceride, cholesterol, aspartate aminotransferase, gamma‐glutamyl transferase, creatine kinase, and caspase‐3, as well as deposited collagen. These injurious effects were antagonized after treatment with MSCs. So, MSCs possessed antioxidant, antiapoptotic, as well antifibrotic effects, which will perhaps initiate them as notable prospective for the treatment of cardiac fibrosis.  相似文献   

2.
Mesenchymal stem cells (MSCs) curative effects on methotrexate (MTX)‐induced kidney and liver injuries remain elusive. Therefore, rats were divided into five groups, rats received MTX orally (14 mg/kg) as a single dose/week for 2 weeks, groups 3 and 4 were injected once with 2 × 106 cells bone marrow MSCs and adipose‐derived MSCs, respectively. The last group administered dexamethasone (DEX) (0.5 mg/kg, p.o) for 7 days. MTX caused marked increase in malondialdehyde and nitrite/nitrate concentrations. However, MTX administration decreased reduced glutathione content plus catalase activity. In addition, MTX caused a significant increment in kidney and liver biomarkers levels. Moreover, MTX showed renal tubules vacuolation and necrosis of hepatocytes, as well expression of caspase‐3 and nuclear factor kappa beta in kidney and liver tissues were observed. MSCs treatment alleviated previous side effects induced by MTX. MSCs improved nephrotoxicity and hepatotoxicity induced by MTX to a better extent as compared with DEX.  相似文献   

3.
Estimating the ability of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) to alleviate pulmonary injury induced via isoproterenol (ISP). ISP was injected in a dose of (100 mg/kg, subcutaneously twice at an interval of 24 h). One month post BM‐MSCs transplantation by intravenous injection, pulmonary oxidative stress was assessed, and Western blot analyses and histopathological investigations were conducted. Compared with the normal control group, BM‐MSCs transplantation significantly decreased the expression of pulmonary anti‐oxidative stress marker. Western blot analysis revealed that ISP significantly reduced the protein expression of the anti‐oxidative stress marker nuclear related factor‐2 (Nrf2). However, the apoptotic marker (caspase‐3) and collagen content marker (8‐hydroxyproline) were markedly elevated. These biochemical markers were confirmed by histopathological investigations. Finally, it was demonstrated that BM‐MSCs transplantation showed a superior effect in improving pulmonary function through alleviating oxidative stress, apoptosis, and collagen content.  相似文献   

4.
Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow‐derived mesenchymal stem cells (BM‐MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM‐MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion‐induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM‐MSCs. Seventy mice were pre‐treated with BM‐MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro‐vascular endothelial cells (HPMVECs) were pre‐conditioned with BM‐MSCs by oxygen‐glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3‐kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI‐treated mice, administration of BM‐MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD‐treated HPMVECs, co‐culture with BM‐MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM‐MSCs decreased the level of PI3K class I and p‐Akt while the expression of PI3K class III was increased. Finally, BM‐MSCs‐induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM‐MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM‐MSCs and will help to develop new cell‐based therapeutic strategies in lung injury.  相似文献   

5.
Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.  相似文献   

6.
The cardiac protection of mesenchymal stem cell (MSC) transplantation for myocardial infarction (MI) is largely hampered by low cell survival. Haem oxygenase 1 (HO‐1) plays a critical role in regulation of cell survival under many stress conditions. This study aimed to investigate whether pre‐treatment with haemin, a potent HO‐1 inducer, would promote the survival of MSCs under serum deprivation and hypoxia (SD/H) and enhance the cardioprotective effects of MSCs in MI. Bone marrow (BM)‐MSCs were pretreated with or without haemin and then exposed to SD/H. The mitochondrial morphology of MSCs was determined by MitoTracker staining. BM‐MSCs and haemin‐pretreated BM‐MSCs were transplanted into the peri‐infarct region in MI mice. SD/H induced mitochondrial fragmentation, as shown by increased mitochondrial fission and apoptosis of BM‐MSCs. Pre‐treatment with haemin greatly inhibited SD/H‐induced mitochondrial fragmentation and apoptosis of BM‐MSCs. These effects were partially abrogated by knocking down HO‐1. At 4 weeks after transplantation, compared with BM‐MSCs, haemin‐pretreated BM‐MSCs had greatly improved the heart function of mice with MI. These cardioprotective effects were associated with increased cell survival, decreased cardiomyocytes apoptosis and enhanced angiogenesis. Collectively, our study identifies haemin as a regulator of MSC survival and suggests a novel strategy for improving MSC‐based therapy for MI.  相似文献   

7.
Hypoxia triggers physiological and pathological cellular processes, including proliferation, differentiation, and death, in several cell types. Mesenchymal stem cells (MSCs) derived from various tissues have self‐renewal activity and can differentiate towards multiple lineages. Recently, it has been reported that hypoxic conditions tip the balance between survival and death by hypoxia‐induced autophagy, although the underlying mechanism is not clear. The objectives of this study are to compare the effect of hypoxia on the self‐renewal of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) and placental chorionic plate‐derived mesenchymal stem cells (CP‐MSCs) and to investigate the regulatory mechanisms of self‐renewal in each MSC type during hypoxia. The expression of self‐renewal markers (e.g., Oct4, Nanog, Sox2) was assessed in both cell lines. PI3K and stem cell factor (SCF) expression gradually increased in CP‐MSCs but were markedly downregulated in BM‐MSCs by hypoxia. The phosphorylation of ERK and mTOR was augmented by hypoxia in CP‐MSCs compared to control. Also, the expression of LC3 II, a component of the autophagosome and the hoof‐shaped autophagosome was detected more rapidly in CP‐MSCs than in BM‐MSCs under hypoxia. Hypoxia induced the expression of SCF in CP‐MSCs and increased SCF/c‐kit pathway promotes the self‐renewal activities of CP‐MSCs via an autocrine/paracrine mechanism that balances cell survival and cell death events by autophagy. These activities occur to a greater extent in CP‐MSCs than in BM‐MSCs through regulating the phosphorylation of mTOR. These findings will provide useful guidelines for better understanding the function of SCF/c‐kit in the self‐renewal and autophagy‐regulated mechanisms that promote of MSC survival. J. Cell. Biochem. 114: 79–88, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Progressive pulmonary inflammation and emphysema have been implicated in the progression of chronic obstructive pulmonary disease (COPD), while current pharmacological treatments are not effective. Transplantation of bone marrow mesenchymal stem cells (MSCs) has been identified as one such possible strategy for treatment of lung diseases including acute lung injury (ALI) and pulmonary fibrosis. However, their role in COPD still requires further investigation. The aim of this study is to test the effect of administration of rat MSCs (rMSCs) on emphysema and pulmonary function. To accomplish this study, the rats were exposed to cigarette smoke (CS) for 11 weeks, followed by administration of rMSCs into the lungs. Here we show that rMSCs infusion mediates a down‐regulation of pro‐inflammatory mediators (TNF‐α, IL‐1β, MCP‐1, and IL‐6) and proteases (MMP9 and MMP12) in lung, an up‐regulation of vascular endothelial growth factor (VEGF), VEGF receptor 2, and transforming growth factor (TGFβ‐1), while reducing pulmonary cell apoptosis. More importantly, rMSCs administration improves emphysema and destructive pulmonary function induced by CS exposure. In vitro co‐culture system study of human umbilical endothelial vein cells (EA.hy926) and human MSCs (hMSCs) provides the evidence that hMSCs mediates an anti‐apoptosis effect, which partly depends on an up‐regulation of VEGF. These findings suggest that MSCs have a therapeutic potential in emphysematous rats by suppressing the inflammatory response, excessive protease expression, and cell apoptosis, as well as up‐regulating VEGF, VEGF receptor 2, and TGFβ‐1. J. Cell. Biochem. 114: 323–335, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Mesenchymal stem cells (MSCs) have been investigated to treat liver diseases, but the efficiency of MSCs to treat chronic liver diseases is conflicting. FGF21 can reduce inflammation and fibrosis. We established FGF21‐secreting adipose derived stem cells (FGF21_ADSCs) to enhance the effects of ADSCs and transplanted them into thioacetamide (TAA)‐induced liver fibrosis mice via the tail vein. Transplantation of FGF21_ADSCs significantly improved liver fibrosis by decreasing serum hyaluronic acid and reducing the expression of fibrosis‐related factors such as α‐smooth muscle actin (α‐SMA), collagen and tissue inhibitor of metalloproteinase‐1 (TIMP‐1) compared with the Empty_ADSCs by inhibition of p‐JNK, NF‐κB and p‐Smad2/3 signalling. α‐lactoalbumin (LA) and lactotransferrin (LTF), secretory factors produced from FGF21_ADSCs inhibited TGF‐β1‐induced expression of α‐SMA and collagen in LX‐2 cells. These results suggest that transplantation of FGF21_ADSCs inhibited liver fibrosis more effectively than Empty_ADSCs, possibly via secretion of α‐LA and LTF.  相似文献   

10.
In our previous study, we have confirmed that in phosgene‐induced acute lung injury (ALI) rats, mesenchymal stem cells (MSCs) can treat the disease. Moreover, heat shock protein 70 (Hsp70) can be used as a protective protein, and Hsp70 upregulated drastically when exposed to stressful conditions. We aimed to assess that MSCs overexpressed Hsp70 could enhance the capacity of MSCs and have a good therapeutic effect on phosgene‐induced ALI. We transduced MSCs with Hsp70 and then we tested the function of the transduced MSCs. Sprague Dawley rats inhaled phosgene in a closed container for 5 minutes. The transduced MSCs and MSCs were administered via the trachea immediately. Rats in each group were killed at 6, 24, and 48 hours after exposure. Compared to MSCs, MSCs overexpressed Hsp70 enhanced MSCs viability, antiapoptotic ability, and migration ability, and these effects disappeared when using the phosphatidylinositol 3?kinase/protein kinase B (PI3K/AKT) pathway inhibitor. Furthermore, the results of pathological alterations improved. The lung wet‐to‐dry ratio declined. The lung injury index total protein content and total cells in bronchoalveolar lavage fluid (BALF) also declined. The level of tumor necrosis factor α declined and the level of interleukin‐10 improved in BALF and serum. MSCs overexpressed Hsp70 can enhance the capacity and efficacy of MSCs in the treatment of phosgene‐induced ALI and may be mediated through the PI3k/AKT signaling pathway. This article introduces a new approach to stem cell therapy for improving the efficacy of phosgene‐induced ALI.  相似文献   

11.
12.
Prostate cancer frequently metastasizes to the bone, and the interaction between cancer cells and bone microenvironment has proven to be crucial in the establishment of new metastases. Bone marrow mesenchymal stem cells (BM‐MSCs) secrete various cytokines that can regulate the behaviour of neighbouring cell. However, little is known about the role of BM‐MSCs in influencing the migration and the invasion of prostate cancer cells. We hypothesize that the stromal cell‐derived factor‐1α released by BM‐MSCs may play a pivotal role in these processes. To study the interaction between factors secreted by BM‐MSCs and prostate cancer cells we established an in vitro model of transwell co‐culture of BM‐MSCs and prostate cancer cells DU145. Using this model, we have shown that BM‐MSCs produce soluble factors which increase the motility of prostate cancer cells DU145. Neutralization of stromal cell‐derived factor‐1α (SDF1α) via a blocking antibody significantly limits the chemoattractive effect of bone marrow MSCs. Moreover, soluble factors produced by BM‐MSCs greatly activate prosurvival kinases, namely AKT and ERK 1/2. We provide further evidence that SDF1α is involved in the interaction between prostate cancer cells and BM‐MSCs. Such interaction may play an important role in the migration and the invasion of prostate cancer cells within bone.  相似文献   

13.
Mesenchymal stem cells (MSCs) exhibit therapeutic benefits on aortic aneurysm (AA); however, the molecular mechanisms are not fully understood. The current study aimed to investigate the therapeutic effects and potential mechanisms of murine bone marrow MSC (BM‐MSCs)–derived conditioned medium (MSCs‐CM) on angiotensin II (AngII)‐induced AA in apolipoprotein E‐deficient (apoE?/?) mice. Murine BM‐MSCs, MSCs‐CM or control medium were intravenously administrated into AngII‐induced AA in apoE?/? mice. Mice were sacrificed at 2 weeks after injection. BM‐MSCs and MSCs‐CM significantly attenuated matrix metalloproteinase (MMP)‐2 and MMP‐9 expression, aortic elastin degradation and AA growth at the site of AA. These treatments with BM‐MSCs and MSCs‐CM also decreased Ly6chigh monocytes in peripheral blood on day 7 and M1 macrophage infiltration in AA tissues on day 14, whereas they increased M2 macrophages. In addition, BM‐MSCs and MSCs‐CM reduced MCP‐1, IL‐1Ra and IL‐6 expression and increased IL‐10 expression in AA tissues. In vitro, peritoneal macrophages were co‐cultured with BM‐MSCs or fibroblasts as control in a transwell system. The mRNA and protein expression of M2 macrophage markers were evaluated. IL‐6 and IL‐1β were reduced, while IL‐10 was increased in the BM‐MSC systems. The mRNA and protein expression of M2 markers were up‐regulated in the BM‐MSC systems. Furthermore, high concentration of IGF1, VEGF and TGF‐β1 was detected in MSCs‐CM. Our results suggest that MSCs‐CM could prevent AA growth potentially through regulating macrophage polarization. These results may provide a new insight into the mechanisms of BM‐MSCs in the therapy of AA.  相似文献   

14.
Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal stem cells directly replace fibrosis with normal lung cells using IPF model mice. As results, transplanted MSC successfully integrated and differentiated into type II lung cell which express surfactant protein. In the other hand, we examine the therapeutic effects of microvesicle treatment, which were released from mesenchymal stem cells. Though the therapeutic effects of MV treatment is less than that of MSC treatment, MV treat-ment meaningfully reduced the symptom of IPF, such as collagen deposition and inflammation. These data suggest that stem cell transplantation may be an effective strategy for the treatment of pulmonary fibrosis via replacement and cytoprotective effect of microvesicle released from MSCs.  相似文献   

15.
Stem cells have unique properties such as self‐renewal, plasticity to generate various cell types, and availability of cells of human origin. The characteristics are attentive in the toxicity screening against chemical toxicants. Placenta‐derived stem cells (PDSCs) have been spotlighted as a new cell source in stem cell research recently because they are characterized by their capacity to differentiate into multilineages. However, the use of PDSCs as an in vitro screening model for potential drug candidates has not yet been studied. Here, we analyzed the potentials for bone‐marrow‐derived mesenchymal stem (BM‐MSCs), which is a representative adult stem cells and PDSCs as an in vitro hepatotoxicity screening system, using well‐known hepatotoxicants. BM‐MSCs and PDSCs were analyzed to the potential for hepatogenic differentiation and were cultured with different concentrations of hepatotoxicants for time courses. The viability and ATP‐binding cassette (ABC) transporters were measured by the MTT assay and RT‐PCR, respectively. The sensitivities of PDSCs to hepatotoxicants are more sensitive than those of BM‐MSCs. The viability (IC50) to in PDSCs was less than that of BM‐MSCs after 48 and 72 h (P < 0.05) of CCl4 exposure. The toxicities of CCl4 were decreased by fourfold in hepatogenic differentiation inducing PDSCs compared to the undifferentiated cells. The alteration of ABCGs was observed in PDSCs during differentiation. These findings suggest that the naïve PDSCs expressing ABCGs can be used as a source for in vitro screening system as well as the expression patterns of ABCG1 and ABCG2 might be involved in the sensitivity of PDSCs to hepatotoxicants. J. Cell. Biochem. 112: 49–58, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Epithelial‐mesenchymal transition (EMT) plays an important role in idiopathic pulmonary fibrosis (IPF). Astragaloside IV (ASV), a natural saponin from astragalus membranaceus, has shown anti‐fibrotic property in bleomycin (BLM)‐induced pulmonary fibrosis. The current study was undertaken to determine whether EMT was involved in the beneficial of ASV against BLM‐induced pulmonary fibrosis and to elucidate its potential mechanism. As expected, in BLM‐induced IPF, ASV exerted protective effects on pulmonary fibrosis and ASV significantly reversed BLM‐induced EMT. Intriguing, transforming growth factor‐β1 (TGF‐β1) was found to be up‐regulated, whereas Forkhead box O3a (FOXO3a) was hyperphosphorylated and less expressed. However, ASV treatment inhibited increased TGF‐β1 and activated FOXO3a in lung tissues. TGF‐β1 was administered to alveolar epithelial cells A549 to induce EMT in vitro. Meanwhile, stimulation with TGF‐β1‐activated phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway and induced FOXO3a hyperphosphorylated and down‐regulated. It was found that overexpression of FOXO3a leading to the suppression of TGF‐β1‐induced EMT. Moreover, ASV treatment, similar with the TGF‐β1 or PI3K/Akt inhibitor, reverted these cellular changes and inhibited EMT in A549 cells. Collectively, the results suggested that ASV significantly inhibited TGF‐β1/PI3K/Akt‐induced FOXO3a hyperphosphorylation and down‐regulation to reverse EMT during the progression of fibrosis.  相似文献   

17.
Hypoxia could stimulate proliferation of mesenchymal stem cells (MSCs) under certain conditions. This study determined angiotensin II mechanisms and PI3K/AKT pathway in hypoxia‐induced proliferation of MSCs. Hypoxia (3% oxygen) induced cellular proliferation in mouse MSCs and upregulated endogenous angiotensin II and angiotensin‐converting enzyme in the cell culture and expression of AT1 receptors. The expressions of Sox2, not Oct4 and Rex1, were significantly increased by the hypoxia. The blockade of AT1 receptors, not AT2 receptors, depressed hypoxia induced the proliferative effects. Both hypoxia and exogenous angiotensin II activated p‐AKT. Moreover, AT1 receptor inhibitor blocked the effects of hypoxia‐mediated p‐AKT upregulation. The data demonstrated that the hypoxia at 3% oxygen level could induce mouse MSC proliferation, probably as a result of the activation of PI3K signalling pathways via AT1 receptors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Adult stem cells are considered multipotent. Especially, human bone marrow‐derived mesenchymal stem cells (hBM‐MSCs) have the potential to differentiate into nerve type cells. Electromagnetic fields (EMFs) are widely distributed in the environment, and recently there have been many reports on the biological effects of EMFs. hBM‐MSCs are weak and sensitive pluripotent stem cells, therefore extremely low frequency‐electromagnetic fields (ELF‐EMFs) could be affect the changes of biological functions within the cells. In our experiments, ELF‐EMFs inhibited the growth of hBM‐MSCs in 12 days exposure. Their gene level was changed and expression of the neural stem cell marker like nestin was decreased but the neural cell markers like MAP2, NEUROD1, NF‐L, and Tau were induced. In immunofluorescence study, we confirmed the expression of each protein of neural cells. And also both oligodendrocyte and astrocyte related proteins like O4 and GFAP were expressed by ELF‐EMFs. We suggest that EMFs can induce neural differentiation in BM‐MSCs without any chemicals or differentiation factors. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

19.
Bone marrow‐derived mesenchymal stem cells (BM‐MSCs ) transplantation has been reported to be a promising therapy for myocardial infarction (MI). However, low survival rate of BM‐MSCs in infarcted heart is one of the major limitations for the perspective clinical application. In this study, we aimed to investigate the effect of hepatocyte growth factor (HGF) on left ventricular function improvement of HGF gene‐modified BM‐MSCs (HGF‐MSCs) after its delivery into the infarcted rat hearts. BM‐MSCs were isolated with fibroblast‐like morphology and expressed CD44+CD29+CD90+/CD34‐CD45‐CD31‐CD11a. After 5‐azacytidine induction in vitro, 20%–30% of the cells were positively stained for desmin, cardiac‐specific cardiac troponin I and connexin‐43. Histological staining revealed that 2 weeks after MI is an optimal time point with decreased neutrophil infiltration and increased vascular number. Minimal infarct size and best haemodynamic analysis were also observed after cell injection at 2 weeks compared with that of 1 h, 1 week or 4 weeks. Echocardiogram confirmed that transplantation with HGF‐MSCs significantly improved left ventricular function compared with other groups in rat MI models. MSCs and HGF‐MSCslabelled with DAPI were detected 4 weeks after MI in the infarcted area. Decreased infarcted scar area and increased angiogenesis formation could be found in HGF‐MSCs group than in other groups as demonstrated by hematoxylin and eosin (H&E) staining and factor VIII staining. These results indicate that HGF‐MSCs transplantation could enhance the contractile function and attenuate left ventricular remodelling efficiently in rats with MI. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) have been shown to be capable of differentiating into multiple cell type and exert immunomodulatory effects. Since the selection of ideal stem cell is apparently crucial for the outcome of experimental stem cell therapies, therefore, in this study we compared AD‐MSCs conditioned media (CM) from BALB/c, C57BL/6, and DBA mouse strains. No significant difference was found in the morphology, cell surface markers, in vitro differentiation and proliferation potentials of AD‐MSCs isolated from C57BL/6, BALB/c, and DBA mice. The immunological assays showed some variation among the strains in the cytokines, nitric oxide (NO), and indoleamine 2,3‐dioxygenase (IDO) production and immunomodulatory effects on splenocytes functions. Our results indicated a suppression of splenocytes proliferation in the presence of AD‐MSC CM from the three inbred mouse strains. However, BALB/c CM exerted a higher suppression of splenocytes proliferation. AD‐MSCs isolated from C57BL/6 and BALB/c mice produced higher levels of TGF‐β than those from DBA mice. Furthermore, IL‐17 and IDO production was higher in AD‐MSCs isolated from BALB/c mice. Our results indicated an increased production of TGF‐β, IL‐4, IL‐10, NO, and IDO by splenocytes in response to CM from BALB/c AD‐MSCs. In conclusion, our results showed that the immunomodulatory properties of mouse AD‐MSCs is strain‐dependent and this variation should be considered during selection of appropriate stem cell source for in vivo experiments and stem cell therapy strategies. J. Cell. Biochem. 114: 955–965, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号