首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Heart tissue contains large amounts of the protein encoded by the Ca2+ pump gene SERCA2. The SERCA2 RNA can be spliced alternatively to produce mRNA encoding the proteins SERCA2a and SERCA2b which differ in their C-terminal sequences. In this study we report the tissue distribution of SERCA2a and SERCA2b isoforms byin situ hybridization to rabbit heart and stomach. The expression of SERCA2 mRNA was high in myocardial cells, being the highest in the atrial region. In contrast, there was more SERCA2 protein in Western blots in ventricles than in atria. Myocardial cells expressed predominantly the mRNA for the isoform SERCA2a. Whereas the stomach smooth muscle and the neuronal plexus expressed SERCA2 at levels much lower than myocardial cells, the expression was very high in the stomach mucosa. Mucosa contained mainly the mRNA for SERCA2b. From immunocytochemistry it was concluded that the anti-heart SR Ca2+ pump antibody IID8 reacted much better with heart and surface mucosal cells in the stomach than with the stomach smooth muscle, and that IID8 reactivity was intracellular. In contrast PM4A2B, an antibody against the plasma membrane Ca2+ pump, reacted well with heart and stomach smooth muscle, plexus and mucosa, and its localization appeared to be in the plasma membrane. Thus, stomach smooth muscle expressed SERCA2b mRNA and protein at low levels, mucosa expressed SERCA2b mRNA and protein at high levels, atria and ventricle expressed SERCA2a mRNA and protein at high levels, mRNA being more in atria, but protein being more in ventricles.Deceased August 14, 1992  相似文献   

2.
The role of the sarco-endoplasmic reticulum Ca(2+)-ATPases (SERCA) in the regulation of cell proliferation by Ca2+ was investigated by testing the effect of platelet-derived growth factor (PDGF) on cultured pig aorta smooth muscle cells. For this purpose, the PDGF-mediated rise in the Ca2+ concentration was first examined for its ability to induce the formation of prostaglandins from the specific membrane enzyme, cyclooxygenase. In parallel experiments, similar conditions (10 ng/ml PDGF for 24 h) were used to investigate the smooth muscle cell membrane SERCA2 isoforms. Total SERCA2 activity rose by 472% as reflected by their specific formation of phosphorylated intermediate (E approximately P). This rise correlated with an increase in the amount of SERCA2 proteins (100 kDa) as shown by Western blotting. With isoform-specific anti-SERCA2-a and anti-SERCA2-b antibodies, we demonstrated that the increase in total SERCA2 proteins concerned the minor isoform SERCA2-a, which rose 10-fold, whereas SERCA2-b proteins were not affected. Lastly, Northern blotting using riboprobes showed that PDGF treatment increased the SERCA2-a mRNA species by 82%, and concomitantly decreased the SERCA2-b mRNA by 28%, as a result of isoform switching. We conclude that up-regulation of the SERCA2-type Ca(2+)-ATPases occurs in PDGF-treated smooth muscle cells, which suggests that this enzymatic system plays an essential part in cell proliferation.  相似文献   

3.
cDNAs coding for the plasma-membrane Ca2+ pump have been isolated from a pig smooth-muscle cDNA library and sequenced. The open reading frame encodes a protein of 1220 amino acids, which corresponds to the one already described in a human teratoma cell line. We demonstrate here that this cDNA probably represents the only isoform of the plasma-membrane Ca2(+)-transport ATPase expressed in this smooth muscle. There is no evidence for the expression of any other plasma-membrane Ca2(+)-pump gene, or for the presence of other alternatively spliced isoforms. These results are in apparent contradiction to those obtained on protein levels which demonstrate the reaction of at least two different polypeptides with a panel of antibodies against the plasma-membrane ATPase. It is suggested that these two polypeptides could result from a post-translational modification of one single enzyme.  相似文献   

4.
The sarco(endo)plasmic reticulum Ca2+ATPases (SERCA) system, a key regulator of calcium cycling and signaling, is composed of several isoforms. We aimed to characterize the expression of SERCA isoforms in mouse cardiovascular tissues and their modulation in cardiovascular pathologies (heart failure and/or atherosclerosis).Five isoforms (SERCA2a, 2b, 3a, 3b and 3c) were detected in the mouse heart and thoracic aorta. Absolute mRNA quantification revealed SERCA2a as the dominant isoform in the heart (~ 99%). Both SERCA2 isoforms co-localized in cardiomyocytes (CM) longitudinal sarcoplasmic reticulum (SR), SERCA3b was located at the junctional SR. In the aorta, SERCA2a accounted for ~ 91% of total SERCA and SERCA2b for ~ 5%. Among SERCA3, SERCA3b was the most expressed (~ 3.3%), mainly found in vascular smooth muscle cells (VSMC), along with SERCA2a and 2b.In failing CM, SERCA2a was down-regulated by 2-fold and re-localized from longitudinal to junctional SR. A strong down-regulation of SERCA2a was also observed in atherosclerotic vessels containing mainly synthetic VSMCs. The proportion of both SERCA2b and SERCA3b increased to 9.5% and 8.3%, respectively.In conclusion: 1) SERCA2a is the major isoform in both cardiac and vascular myocytes; 2) the expression of SERCA2a mRNA is ~ 30 fold higher in the heart compared to vascular tissues; and 3) nearly half the amount of SERCA2a mRNA is measured in both failing cardiomyocytes and synthetic VSMCs compared to healthy tissues, with a relocation of SERCA2a in failing cardiomyocytes. Thus, SERCA2a is the principal regulator of excitation–contraction coupling in both CMs and contractile VSMCs.  相似文献   

5.
We have studied the expression of the gene 2 for the sarco(endo)plasmic reticulum Ca2+ pump (SERCA2) in BC3H1 cells. Myogenic differentiation not only activated the SERCA2 expression but it also induced an isoform switch. Undifferentiated myoblasts only expressed the SERCA2b isoform (non-muscle) whereas differentiated myocytes predominantly contained the SERCA2a isoform (cardiac/slow skeletal muscle). The isoform switch was documented by immunoblot analysis with isoform-specific antibodies. This observation was confirmed at the mRNA level by using antisense RNA probes specific for class 1 (SERCA2a) or class 2 (SERCA2b) messengers. The expression of the SERCA2a isoform after differentiation was accompanied by a decreased sensitivity of the Ca2+ uptake in permeabilized cells to the Ca2+ pump inhibitor thapsigargin.  相似文献   

6.
J Fujii  K Maruyama  M Tada  D H MacLennan 《FEBS letters》1990,273(1-2):232-234
Full length cDNAs encoding both slow-twitch/cardiac (SERCA2) and fast-twitch skeletal muscle (SERCA1) Ca2(+)-ATPases were expressed by transient transfection of COS-1 cells. Studies of the Ca2(+)-dependency of Ca2(+)-transport in microsomes isolated from these cells showed that both isoforms had an affinity for Ca2+ of about 0.2 microM. The Ca2(+)-affinity of SERCA2 was lowered when phospholamban was co-expressed with it, demonstrating that the two proteins interact in this expression system. These studies support the view that phospholamban inhibition accounts for the low Ca2(+)-affinity and low activity of SERCA2 in cardiac muscle sarcoplasmic reticulum.  相似文献   

7.
Endothelium from rat aorta expresses sarco/endoplasmic reticulum Ca2+(SERCA) pump gene SERCA3 where as the smooth muscle expresses SERCA2. This has led to the postulate that vascular endothelium expresses SERCA3. To test this postulate, we examined the SERCA2 and SERCA3 mRNA expression in endothelium and smooth muscle dissected from coronary artery, coronary vein, aorta and vena cava of pig. Smooth muscle from all arteries and veins expressed only the SERCA2 mRNA. Endothelium from coronary artery, coronary vein and aorta expressed both SERCA2 and SERCA3 mRNA but the endothelium from vena cava did not express SERCA3 mRNA although it expressed SERCA2. These observations support the postulate that vascular endothelium expresses SERCA3 but the affirmation is equivocal because vena cava endothelium does not express SERCA3. (Mol Cell Biochem 000: 000-000, 1999)  相似文献   

8.
9.
10.
We have previously shown that low levels of the volatile anesthetic halothane activate the Ca-ATPase in skeletal sarcoplasmic reticulum (SR), but inhibit the Ca-ATPase in cardiac SR. In this study, we ask whether the differential inhibition is due to (a) the presence of the regulatory protein phospholamban in cardiac SR, (b) different lipid environments in skeletal and cardiac SR, or (c) the different Ca-ATPase isoforms present in the two tissues. By expressing skeletal (SERCA 1) and cardiac (SERCA 2a) isoforms of the Ca-ATPase in Sf21 insect cell organelles, we found that differential anesthetic effects in skeletal and cardiac SR are due to differential sensitivities of the SERCA 1 and SERCA 2a isoforms to anesthetics. Low levels of halothane inhibit the SERCA 2a isoform of the Ca-ATPase, and have little effect on the SERCA 1 isoform. The biochemical mechanism of halothane inhibition involves stabilization of E2 conformations of the Ca-ATPase, suggesting direct anesthetic interaction with the ATPase. This study establishes a biochemical model for the mechanism of action of an anesthetic on a membrane protein, and should lead to the identification of anesthetic binding sites on the SERCA 1 and SERCA 2a isoforms of the Ca-ATPase.  相似文献   

11.
To assess the influence of paralysis on the expression of phenotypic protein isoforms related to muscle relaxation, the effects of spinal cord transection (ST) on sarco(endo)plasmic reticulum calcium ATPase (SERCA) pump isoform protein levels in the slow rat soleus were measured. Western blotting using SERCA isoform specific antibodies demonstrated a rapid up-regulation (7 days post ST) of the fast fiber type-specific isoform (SERCA1). In contrast, the slow fiber type-specific isoform, SERCA2, was decreased with a slower time-course. The up-regulation of SERCA1 protein preceded the up-regulation of fast myosin heavy chain (MyHC) (i.e., MyHC-II). Immunohistochemical analyses of single muscle fibers showed that 15 days after ST there was a pronounced increase in the proportion of slow MyHC fibers with SERCA1 confirming that SERCA1 was up-regulated in the slow fibers of the soleus prior to MyHC-II. These data suggest that the expression of the SERCA isoforms (particularly SERCA1) may serve as more sensitive markers of phenotypic adaptation in response to altered levels of contractile activity than the MyHC isoforms. In addition, since the expression of SERCA isoforms was dissociated from MyHC isoforms, regulation of gene expression for these two different protein systems must involve different signaling events and/or synthetic processes.  相似文献   

12.
Smooth muscle expresses in its endoplasmic reticulum an isoform of the Ca2+-transport ATPase that is very similar to or identical with that of the cardiac-muscle/slow-twitch skeletal-muscle form. However, this enzyme differs from that found in fast-twitch skeletal muscle. This conclusion is based on two independent sets of observations, namely immunological observations and phosphorylation experiments. Immunoblot experiments show that two different antibody preparations against the Ca2+-transport ATPase of cardiac-muscle sarcoplasmic reticulum also recognize the endoplasmic-reticulum/sarcoplasmic-reticulum enzyme of the smooth muscle and the slow-twitch skeletal muscle whereas they bind very weakly or not at all to the sarcoplasmic-reticulum Ca2+-transport ATPase of the fast-twitch skeletal muscle. Conversely antibodies directed against the fast-twitch skeletal-muscle isoform of the sarcoplasmic-reticulum Ca2+-transport ATPase do not bind to the cardiac-muscle, smooth-muscle or slow-twitch skeletal-muscle enzymes. The phosphorylated tryptic fragments A and A1 of the sarcoplasmic-reticulum Ca2+-transport ATPases have the same apparent Mr values in cardiac muscle, slow-twitch skeletal muscle and smooth muscle, whereas the corresponding fragments in fast-twitch skeletal muscle have lower apparent Mr values. This analytical procedure is a new and easy technique for discrimination between the isoforms of endoplasmic-reticulum/sarcoplasmic-reticulum Ca2+-transport ATPases.  相似文献   

13.
Endo/sarcoplasmic reticulum (ER) Ca2+-pumps are important for cell survival and communication but they are inactivatedby reactive oxygen species (ROS).We have previously reported that the Ca2+-pump isoform SERCA3a is more resistant than SERCA2b to damage by peroxide. Since peroxide and superoxide differ in their redox potentials, we now report the effects of superoxide on the two Ca2+-pump isoforms. We isolated microsomes from HEK293 cells transiently transfected with SERCA2b or SERCA3a cDNA. We exposed these microsomes to superoxide which was generated using xanthine plus xanthine oxidase and catalase to prevent accumulation of peroxide due to superoxide dismutation. Superoxide damaged the Ca2+- transport activity of both isoforms but SERCA3a was damaged at higher concentrations of superoxide and upon longer periods of exposures than was SERCA2b. Thus the SERCA3a isoform is more resistant than SERCA2b to inactivation by both superoxide and peroxide. (Mol Cell Biochem 000: 000-000, 1999)  相似文献   

14.
Calponin is a basic smooth-muscle-specific protein capable of binding to F-actin, tropomyosin and calmodulin in vitro. Using two-dimensional gel electrophoresis, we show that calponin exists as multiple isoelectric variants in avian and mammalian tissues. During chick embryogenesis, one isoform is expressed in gizzard that shows a pI identical to the most basic adult alpha variant; around 10 d after hatching multiple isoforms then appear. SM 22 [Pearlstone, J. R., Weber, M., Lees-Miller, J. P., Carpenter, M. R. & Smillie, L. B. (1987) J. Biol. Chem. 262, 5985-5991], which has sequence-motifs related to calponin, displays a similar isoform pattern during development; one isoform (alpha) is present in the embryo and three in the adult. In living smooth-muscle strips from chicken gizzard and guinea pig taenia coli, labelled with 32PO4, no phosphate incorporation could be detected in any of the calponin or SM 22 isoforms during either contraction or relaxation. From the additional observation that antibodies against phosphoserine also failed to label calponin and SM 22 in two-dimensional gel immunoblots, we conclude that the multiple isoforms do not arise via differential phosphorylation. These results support the claim [Barany, M., Rokolya, A. & Barany, K. (1991) FEBS Lett. 279, 65-68] that calponin phosphorylation is not involved in smooth muscle regulation in vivo, as has been suggested from in vitro studies [Winder, S. J. & Walsh, M. J. (1990) J. Biol. Chem. 265, 10148-10155]. In vitro translation of porcine and chicken smooth-muscle mRNA produced only a single (alpha) isoform of calponin, suggesting that the adult isoforms do not derive from multiple gene products; in the same assay two polypeptides appeared in the position of SM 22, one corresponding to the alpha isoform and a second more basic spot, not observed in tissue samples. Whereas calponin and SM 22 appear synchronously during smooth muscle differentiation in vivo, SM 22 is not fully down-regulated like calponin, metavinculin and heavy-caldesmon in smooth muscle cells in culture, pointing to a differential regulation of expression of the alpha SM 22 isoform during smooth-muscle phenotype modulation in vitro.  相似文献   

15.
16.
Expression patterns of sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase (SERCA) and inositol 1,4,5-trisphosphate receptor (IP3R) isoforms were studied in endothelial cells at the mRNA level by ratio RT-PCR technique and subsequent restriction-enzyme analysis. Three types of cells have been used in the present study: rat adrenal medulla microvascular endothelial cells (RAMEC), rat aortic endothelial cells (RAEC), and human umbilical vein endothelial cells (HUVEC). Our data show the presence of multiple SERCA and IP3R isoforms in each type of endothelial cells. Freshly isolated HUVEC were an exception in this respect since they contained only SERCA3 without SERCA2b messengers. The expression patterns changed upon cell proliferation: SERCA3 and IP3R-1 messengers decreased, while IP3R-3 increased with culturing. Upon cell differentiation, induced by culturing the cells on Matrigel, the expression pattern of the IP3R changed even further in all endothelial cell types: IP3R-1 was reduced in all three cell kinds, while IP3R-3 raised significantly in RAEC and RAMEC. In HUVEC the expression of SERCA returned, upon differentiation, to the levels observed in the freshly isolated cells. Thus, the plasticity of expression of various SERCA and IP3R isoforms shows that possibly different Ca2+ pools may play distinct roles in cell proliferation and differentiation.  相似文献   

17.
In smooth muscle, alternative mRNA splicing of a single gene produces four myosin heavy chain (SMMHC) isoforms. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a seven amino acid insert in the motor domain. This insert enhances the kinetic properties of myosin at the molecular level but its exact role at the cell and tissue levels still has to be elucidated. This review focuses on the expression and biological functions of the (+)insert isoform. Current knowledge is summarized regarding its tissue distribution in animals and humans. Studies at the molecular, cellular and tissue levels that aimed at understanding the contribution of this isoform to smooth muscle mechanical function are presented with a particular focus on velocity of shortening. In addition, the altered expression of the (+)insert isoform in diseases and models of diseases and the compensatory mechanisms that occur when the (+)insert is knocked out are discussed. The need for additional studies on the relationship of this isoform to contractile performance and how expression of this isoform is regulated are also considered.  相似文献   

18.
Chronic excitation, at 2 Hz for 6-7 weeks, of the predominantly fast-twitch canine latissimus dorsi muscle promoted the expression of phospholamban, a protein found in sarcoplasmic reticulum (SR) from slow-twitch and cardiac muscle but not in fast-twitch muscle. At the same time that phospholamban was expressed, there was a switch from the fast-twitch (SERCA1) to the slow-twitch (SERCA2a) Ca(2+)-ATPase isoform. Antibodies against Ca(2+)-ATPase (SERCA2a) and phospholamban were used to assess the relative amounts of the slow-twitch/cardiac isoform of the Ca(2+)-ATPase and phospholamban, which were found to be virtually the same in SR vesicles from the slow-twitch muscle, vastus intermedius; cardiac muscle; and the chronically stimulated fast-twitch muscle, latissimus dorsi. The phospholamban monoclonal antibody 2D12 was added to SR vesicles to evaluate the regulatory effect of phospholamban on calcium uptake. The antibody produced a strong stimulation of calcium uptake into cardiac SR vesicles, by increasing the apparent affinity of the Ca2+ pump for calcium by 2.8-fold. In the SR from the conditioned latissimus dorsi, however, the phospholamban antibody produced only a marginal effect on Ca2+ pump calcium affinity. These different effects of phospholamban on calcium uptake suggest that phospholamban is not tightly coupled to the Ca(2+)-ATPase in SR vesicles from slow-twitch muscles and that phospholamban may have some other function in slow-twitch and chronically stimulated fast-twitch muscle.  相似文献   

19.
Two smooth muscle myosin heavy chain isoforms differ in their amino terminus by the presence [(+)insert] or absence [(–)insert] of a seven-amino acid insert. Animal studies show that the (+)insert isoform is predominantly expressed in rapidly contracting phasic muscle and the (–)insert isoform is mostly found in slowly contracting tonic muscle. The expression of the (+)insert isoform has never been demonstrated in human smooth muscle. We hypothesized that the (+)insert isoform is present in humans and that its expression is commensurate with the organ's functional requirements. We report, for the first time, the sequence of the human (+)insert isoform and quantification of its expression by real-time PCR and Western blot analysis in a panel of human organs. The (+)insert isoform mRNA and protein expression levels are significantly greater in small intestine compared with all organs studied except for trachea and are significantly greater in trachea compared with uterus and aorta. To assess the functional significance of this differential myosin isoform expression between organs, we measured the rate of actin filament movement (max) when propelled by myosin purified from rat organs, because the rat and human inserts are identical and their remaining sequences show 93% identity. max exhibits a rank correlation from the most tonic to the most phasic organ. The selective expression of the (+)insert isoform observed among human organs suggests that it is an important determinant of tissue shortening velocity. A differential expression of the (+)insert isoform could also account for altered contractile properties observed in human pathology. phasic and tonic smooth muscle; real-time polymerase chain reaction; in vitro motility assay  相似文献   

20.
A reduced activity of the sarcoplasmic reticulum Ca2+ pump SERCA2a is a hallmark of cardiac dysfunction in heart failure. In SERCA2b/b mice, the normal SERCA2a isoform is replaced by SERCA2b, displaying a higher Ca2+ affinity. This elicited decreased cardiac SERCA2 expression and cardiac hypertrophy. Here, the interplay was studied between the increased Ca2+ affinity and a reduced expression of the pump and its role in the cardiac remodeling was investigated. First, SERCA2b/b mice were crossed with SERCA2b transgenes to boost cardiac SERCA2b expression. However, the enforced expression of SERCA2b was spontaneously countered by an increased inhibition by phospholamban (PLB), reducing the pump's Ca2+ affinity. Moreover, the higher SERCA2 content did not prevent hypertrophy. Second, we studied heterozygous SERCA2b/WT mice, which also express lower SERCA2 levels compared to wild-type. Hypertrophy was not observed. In heterozygotes, SERCA2b expression was specifically suppressed, explaining the reduced SERCA2 content. The SERCA2b/WT model strikingly differs from the homozygote models because SERCA2a (not SERCA2b) is the major isoform and because the inhibition of the pump by PLB is decreased instead of being increased. Thus, a tight correlation exists between the SERCA2 levels and Ca2+ affinity (controlled by PLB). This compensatory response may be important to prevent cardiac remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号