首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drug-induced liver injury (DILI) is a leading cause of discontinuation of new drug approval or withdrawal of marketed medicine based on safety due to organ vulnerability. The aim of this research is to investigate the potential abilities of four different in vitro cell models (L-02, HepG2, HepaRG, and hiHeps cell lines) in assessing marketed drugs labeled with apparently different types of liver injury. A total of 17 drugs with versatile pharmacological profiles were chosen, of which, 14 drugs are recognized as DILI agents and 3 drugs are DILI irrelevant. Preliminary cellular screening assays indicated that the HepaRG cell line had an advantage over other cell lines in predicting drugs associated with DILI in vitro as it had the highest Youden’s index (71.4 %). A multi-parametric screening assay showed that oxidative stress, mitochondrial damage, and disorders of neutral lipid metabolism were changed notably in the HepaRG cell line after DILI-related drugs exposure, accounting for its high sensitivity in comparison with other three cell lines. In addition, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) all correlated with the cytotoxic effects of diclofenac sodium (p?<?0.05), buspirone hydrochloride (p?<?0.01), and danazol (p?<?0.01) in the HepaRG cell line. We conclude that the HepaRG cell line is a superior in vitro cell model to other three cell lines for evaluating drugs with DILI potential.  相似文献   

2.
A new cell line, UM-AVE1, was established from embryos of the mosquito Aedes vexans. Banding patterns for the isozymes lactate dehydrogenase (LDH), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH), xanthine dehydrogenase (XDH), and esterases were compared with those of larval Aedes vexans tissues as well as those of four other mosquito cell lines and one moth cell line. Karyotype analyses confirmed that the dipteran cell lines were not contaminated with lepidopteran cells, because in all mosquito lines the modal number of chromosomes was 6 (=2n) or 7. Isozyme electrophoresis established a specific profile for each cell line. Two isozymes present in UM-AVE1 (LDH, IDH) were not detected in larvae; this could be a reflection of the different stages used for cell line isolation and enzyme analysis, or lability of sample preparations. It is significant that extracts from UM-AVE1 cells and Aedes vexans larvae had an identical double band for XDH, while all other cell lines examined exhibited only a single band.  相似文献   

3.
A cell line, UMN-PIE-1181, initiated in November, 1981, from embryos of a malathion-resistant strain of Indianmeal moth, Plodia interpunctella, was in the 83rd passage on January 28, 1985. The line consists of single, small, fibroblastlike cells that are polyploid with chromosome numbers ranging from 56 to 180. Growth rate is dependent on seeding density, there being no growth at or below seeding densities of 2 × 1055, ml; optimum growth requires a fetal bovine serum concentration of at least 5%. Twenty-nine isozymes were examined. Five enzymes from the cell lines resolved well and subsequently were compared to enzymes extracted from 4-day-old embryos and other life stages of the insects. Phosphomannose isomerase, malic enzyme, malate dehydrogenase, phosphoglucose isomerase, and glucose-6-phosphate dehydrogenase in extracts from the cultured cells and from the insects had identical patterns. Two bands for glutamate-oxalacetate transaminase, present in the cell line, were not observed in the tissue extracts. Furthermore, lactate dehydrogenase from the cultured cells appeared as four bands but was not detectable in any of the samples run from the various life stages of the insects.  相似文献   

4.
Cytochemical reactions specific for glucose-6-phosphatase, glucosan phosphorylase, glucose-6-phosphate dehydrogenase, and α-glycero-phosphate dehydrogenase were observed in the epithelial cells and macrophages of chick liver cell cultures; α-glycerophosphate dehydrogenase activity was observed also in the fibroblasts. Distribution of three of the enzymes was limited to the cytoplasm, their activity being localized primarily in cytoplasmic inclusions. Weak staining of the nuclei and strong staining of the nucleoli occurred in addition to the cytoplasmic reaction in cells treated for glucose-6-phosphatase. In cell cultures inoculated with Trichomonas vaginalis, the activity of three of the enzymes decreased progressively in the course of infection, but that of α-glycerophosphate dehydrogenase increased.  相似文献   

5.
A new lepidopteran cell line, NTU-YB, was derived from pupal tissue of Eurema hecabe (Linnaeus) (Pieridae: Lepidoptera). The doubling time of YB cells in TNM-FH medium supplemented with 8% FBS at 28 °C was 26.87 h. The chromosome numbers of YB cells varied widely from 21 to 196 with a mean of 86. Compared to other insect cell lines, the YB cells produced distinct esterase, malate dehydrogenase, and lactate dehydrogenase isozyme patterns. Identity of the internal transcribed spacer region-I (ITS-I) of YB cells to E. hecabe larvae was 96% and to Eurema blanda larvae (tissue isolated from head) was 81%. The YB cells were permissive to Nosema sp. isolated from E. blanda and the infected YB cells showed obvious cytopathic effects after 3 weeks post inoculation. The highest level of spore production was at 4 weeks post inoculation when cells were infected with the Nosema isolate, and spore production was 1.34 ± 0.9 × 106 spore/ml. Ultrastructrual studies showed that YB cells can host in vitro propagation of the E. blanda Nosema isolate, and developing stages were observed in the host cell nuclei as observed in the natural host, E. blanda. The NTU-YB cell line is also susceptible to Nosema bombycis.  相似文献   

6.
Immunoelectrophoresis of Schistosoma mansoni homogenates against mouse antisera resulted in only one precipitation line, which showed malate dehydrogenase activity. Immunoprecipitins against schistosomal malate dehydrogenase were also demonstrated in sera from individuals with schistosomiasis. Analysis by the double-diffusion method showed that malate dehydrogenase antigens in S. mansoni, S. haematobium, and S. bovis are immunologically indistinguishable. Immunoelectrophoresis of isolated mitochondrial and cytoplasmic malate dehydrogenase, showed that only the mitochondrial enzyme is able to form a malate dehydrogenase active precipitation line. Rabbit antisera directed against purified mitochondrial malate dehydrogenase showed a reaction with the enzyme as judge by immunoelectrophoresis. A purified mitochondrial malate dehydrogenase preparation, coupled to Sepharose 4B, was used in the defined antigen substrate spheres (DASS) test. Sera from experimentally infected mice contained considerably higher levels of antibodies against the mitochondrial malate dehydrogenase preparation than sera from infected individuals.  相似文献   

7.
Pyocyanin is a redox active phenazine pigment produced by Pseudomonas aeruginosa, with broad antibiotic activity having pharmacological, aquaculture, agriculture and industrial applications. In the present work cytotoxicity induced by pyocyanin is demonstrated in a human embryonic lung epithelial cell line (L-132), a rainbow trout gonad cell line (RTG-2) and a Spodoptera frugiperda pupal ovarian cell line (Sf9). For toxicity evaluation, cellular morphology, mitochondrial function (XTT), membrane leakage of lactate dehydrogenase, neutral red uptake, affinity of electrostatic binding of protein with sulforhodamine B dyes, glucose metabolism, and reactive oxygen species, were assessed. Results showed that higher pyocyanin concentration is required for eliciting cytotoxicity in L-132, RTG-2 and Sf9. The microscopic studies demonstrated that the cell lines exposed to pyocyanin at higher concentrations alone showed morphological changes such as clumping and necrosis. Among the three cell lines L-132 showed the highest response to pyocyanin than the others. In short, pyocyanin application at concentrations ranging from 5 to 10 mg l?1 were not having any pathological effect in eukaryotic systems and can be used as drug of choice in aquaculture against vibrios in lieu of conventional antibiotics and as biocontrol agent against fungal and bacterial pathogens in agriculture. This is besides its industrial and pharmacological applications.  相似文献   

8.
Mannitol metabolism was evaluated in fruiting bodies of Lentinus edodes. Cell extracts were prepared from fruiting bodies, and key enzymes involved in mannitol metabolism were assayed, including hexokinase, mannitol dehydrogenase, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, and fructose-6-phosphatase. Mannitol dehydrogenase, fructose-6-phosphatase, mannitol-1-phosphatase, and hexokinase activities were found in extracts of fruiting bodies. However, mannitol-1-phosphate dehydrogenase activity was not detected. Mycelial cultures were grown in an enriched liquid medium, and enzymes of the mannitol cycle were assayed in cell extracts of rapidly growing cells. Mannitol-1-phosphate dehydrogenase activity was also not found in mycelial extracts. Hence, evidence for a complete mannitol cycle both in vegetative mycelia and during mushroom development was lacking. The pathway of mannitol synthesis in L. edodes appears to utilize fructose as an intermediate.  相似文献   

9.
The fungus, Cunninghamella elegans has been widely used in bioremediation and microbial models of mammalian studies in many laboratories. Using the polymerase chain reaction to randomly amplify the insert directly from the single non-blue plaques of a C. elegans cDNA library, then partly sequencing and comparing with GenBank sequences, we have identified a clone which contains C. elegans 6-phosphogluconate dehydrogenase gene. The polymerase chain reaction product was cloned into a plasmid, pGEM-T Easy vector for full insert DNA sequencing. The 6-phosphogluconate dehydrogenase gene (1458 bases) and the deduced protein sequence were determined from the insert DNA sequence. The gene was found by open reading frame analysis and confirmed by the alignment of the deduced protein sequence with other published 6-phosphogluconate dehydrogenase sequences. Several highly conserved regions were found for the 6-phosphogluconate dehydrogenase sequences. The 6-phosphogluconate dehydrogenase gene was subcloned and over-expressed in a plasmid–E. coli system (pQE30). The cell lysate of this clone has a very high 6-phosphogluconate dehydrogenase enzyme activity. Most of the recombinant protein in this system was formed as insoluble inclusion bodies, but soluble in high concentration of urea-buffer. Ni-NTA resin was used to purify the recombinant protein which showed 6-phosphogluconate dehydrogenase enzyme activity. The recombinant protein has a predicted molecular size correlating with that revealed by sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. The C. elegans 6-phosphogluconate dehydrogenase was in a cluster with yeast' 6-phosphogluconate dehydrogenase in the phylogenetic tree. Bacterial 6-phosphogluconate dehydrogenase and higher organisms' 6-phosphogluconate dehydrogenase were found in different clusters.  相似文献   

10.
The genus Rattus is one of the main pest genus of rodent. Most species of the genus carry all kinds of pathogenic bacteria to human being. They are traditionally considered to be a least understood group. The complete mitochondrial genome of the White-Footed Indochinese Rat, Rattus nitidus was determined in this study. The characterization of mitochondrial genomes of Rattus genus was also analyzed based on comprehensive comparison. The result of evolutionary patterns of protein-coding genes (PCGs) suggested purifying selection was the predominant evolutionary forces in the mitochondrial genomes of Rattus genus. The NADH dehydrogenase 4 gene (ND4) showed a highly elevated Ka/Ks ratio compared to the other protein-coding genes, which indicated ND4 was most likely under relaxed selection pressure. Phylogenetic analysis provided a well-supported outline of Rattus genus, and revealed two groups in the genus. R. nitidus had a sister relationship with R. norvegicus.  相似文献   

11.
It is important to secure various biological resources in situations of diminishing wildlife genetic diversity. Cultured cells are useful bioresources because they can stably store genetic information for a long time and can be expanded efficiently. Here, we established fibroblast cell lines from Apodemus agrarius as a new living resource. A. agrarius is an important sub-predator species in ecosystem food chains and for the study of infection epidemiology. Established cell lines were characterized by chromosome and mitochondrial gene analysis, the observation of cell morphology, and their anchorage-dependent growth pattern. We also examined susceptibility to endocrine disruptors (EDCs), which threaten biodiversity, using these established cell lines. Nonylphenol (NP) is a well-known EDC that threatens wildlife; however, its impact is poorly understood. Sensitivity to NP was confirmed based on two cell viability assays, namely MTT and lactate dehydrogenase. Cells exposed to NP were analyzed for abnormalities in cell growth and mitochondrial function by evaluating the expression of genes (specifically, those encoding growth hormone receptor and cytochrome C oxidase). This newly established cell line represents a valuable tool for the evaluation of toxic substances such as EDCs and this cell was biobanked for study about relationship between various environmental pollution and decreasing biodiversity.  相似文献   

12.
An intercellular washing solution containing about 1% of the soluble protein, 0.3% or less of the glucose-6-phosphate dehydrogenase activity, but up to 20% of the peroxidase and β-d-glucosidase activity of barley (Hordeum vulgare L.) or oat (Avena sativa L.) primary leaves was obtained by vacuum infiltrating peeled leaves with pH 6.9 buffered 200 millimolar NaCl. After this wash, segments were homogenized in buffer, centrifuged, and the supernatant was assayed for soluble cytoplasmic enzymes. The pellet was washed and resuspended in 1 molar NaCl to solubilize enzymes strongly ionically bound to the cell wall. The final pellet was assayed for enzyme activity covalently bound in the cell wall. Apoplastic (intercellular washing solution, ionically bound, and covalently bound) fractions contained up to 76% of the β-d-glucosidase activity, 36% of the peroxidase activity, 11% of the nonspecific arylesterase activity, 4% of the malate dehydrogenase activity, but less than 2% of the glucose-6-phosphate dehydrogenase activity of peeled leaf segments. The partitioning and salt-solubility of the enzymes between the apoplast and symplast differed considerably between these two species. Intercellular washing fluid prepared by centrifuging unpeeled leaves had higher activity for glucose-6-phosphate dehydrogenase, less soluble protein, and less peroxidase activity per leaf than intercellular washing solution obtained by our peeling-infiltration-washing technique. The results are discussed in relation to the roles of these enzymes in phenolic metabolism in the cell wall.  相似文献   

13.
Cytosolic isozymes of 6-phosphogluconate dehydrogenase were purified from roots of maize (Zea mays L.). The final preparation contained two 55-kD proteins. Affinity-purified dehydrogenases from a maize line that is null for both cytosolic 6-phosphogluconate dehydrogenase isozymes (Pgd1-null, Pgd2-null) lacked the 55-kD proteins. The substrate kinetics of the purified enzyme were determined.  相似文献   

14.

Background

Burkholderia pseudomallei is the causative agent of melioidosis, a frequently occurring disease in northeastern Thailand, where soil and water high in salt content are common. Using microarray analysis, we previously showed that B. pseudomallei up-regulated a short-chain dehydrogenase/oxidoreductase (SDO) under salt stress. However, the importance of SDO in B. pseudomallei infection is unknown. This study aimed to explore the function of B. pseudomallei SDO, and to investigate its role in interactions between B. pseudomallei and host cells.

Results

Bioinformatics analysis of B. pseudomallei SDO structure, based on homology modeling, revealed a NAD+ cofactor domain and a catalytic triad containing Ser149, Tyr162, and Lys166. This is similar to Bacillus megaterium glucose 1-dehydrogenase. To investigate the role of this protein, we constructed a B. pseudomallei SDO defective mutant, measured glucose dehydrogenase (GDH) activity, and tested the interactions with host cells. The B. pseudomallei K96243 wild type exhibited potent GDH activity under condition containing 300 mM NaCl, while the mutant showed activity levels 15 times lower. Both invasion into the A549 cell line and early intracellular survival within the J774A.1 macrophage cell were impaired in the mutant. Complementation of SDO was able to restore the mutant ability to produce GDH activity, invade epithelial cells, and survive in macrophages.

Conclusions

Our data suggest that induced SDO activity during salt stress may facilitate B. pseudomallei invasion and affect initiation of successful intracellular infection. Identifying the role of B. pseudomallei SDO provides a better understanding of the association between bacterial adaptation and pathogenesis in melioidosis.  相似文献   

15.
The generation of induced pluripotent stem (iPS) cells is a powerful tool in regenerative medicine, and advances in nanotechnology clearly have great potential to enhance stem cell research. Here, we introduce a liposomal magnetofection (LMF) method for iPS cell generation. Efficient conditions for generating virus-free iPS cells from mouse embryonic fibroblast (MEF) cells were determined through the use of different concentrations of CombiMag nanoparticle-DNA(pCX-OKS-2A and pCX-cMyc)-lipoplexes and either one or two cycles of the LMF procedure. The cells were prepared in a short reprogramming time period (≤8 days, 0.032–0.040%). Among the seven LMF-iPS cell lines examined, two were confirmed to be integration-free, and an integration-free LMF-iPS cell line was produced under the least toxic conditions (single LMF cycle with a half-dose of plasmid). This cell line also displayed in vitro/in vivo pluripotency, including teratoma formation and chimeric mouse production. In addition, the safety of CombiMag-DNA lipoplexes for the transfection of MEF cells was confirmed through lactate dehydrogenase activity assay and transmission electron microscopy. These results demonstrated that the LMF method is simple, effective, and safe. LMF may represent a superior technique for the generation of virus-free or integration-free iPS cell lines that could lead to enhanced stem cell therapy in the future.  相似文献   

16.
Medrano JF  Gall GA 《Genetics》1976,83(2):393-407
Growth rate, body composition, cell number, cell size, and the activity of four dehydrogenase enzymes were studied from 10 to 25 days of age in one control (1C) and three lines (3, 9, 10) of Tribolium castaneum that had been subjected to long term selection for large 21-day pupae weight.—Selected lines were two- to three-fold larger in size than the control line throughout development. No major differences in percent of protein were detected among the lines but at any particular age, the selected lines were found to have a higher fat content than the control line. The differences in fat content were closely correlated with development such that all the lines reached very similar levels of percent of fat just prior to pupation. Water content showed an inverse relation to percent of fat.—Selection was observed to have caused major changes in the cellular response to growth. The selected lines had an average of from 17% to 48% larger cells (measured as protein/DNA) and were found to have from 37 to 62% more cells (measured as total DNA) than the control line at all ages from 10 to 19 days of age. In addition, the selected lines had a higher RNA content at all ages studied and higher RNA:DNA ratios at the young ages. In contrast the enzyme activities of ICDH and LDH were 60% lower. The results are interpreted as indicating that a more efficient metabolic machinery had evolved in the rapidly growing selected lines.  相似文献   

17.
A cell line BmN-SWU1 was established from the ovarian tissues of 3-day-old fourth instar Bombyx mori larvae of the 21-872nlw variety by performing primary cultures in Grace's medium supplemented with 20% fetal bovine serum (FBS). The cell line primarily consisted of short spindle cells and round cells. The frequency of cells with chromosome number 2n = 56 was 80.5%; therefore, the cell line was considered to be a diploid cell line. The population-doubling time (PDT) at 45th passage line was 57.7 h. This cell line was susceptible to the B. mori nuclear polyhedrovirus (BmNPV), and the median tissue culture infective dose (TCID50) at a cell density of 105 cells/ml was 16.3 OBs/ml. The transient expression efficiency of the green fluorescent protein (GFP) gene in this cell line was 54.8%. We used the BmN-SWU1 cell line to select and establish a GFP transgenic cell line.  相似文献   

18.
Plants have natural products which use to possess antiproliferative potential against many cancers. In the present study, six isolated fractions (ethyl acetate, petroleum ether, chloroform, n-butanol, ethanol and aqueous) from Solanum nigrum were evaluated for their cytotoxic effect on different cell lines. Hepatic carcinoma cell line (HepG2), cervical cancer cell line (HeLa) and baby hamster kidney (BHK) used as normal non-cancerous cells were evaluated for cytotoxicity against isolated fractions. Cell viability assay was performed to evaluate the cytotoxicity of all fractions on different cell lines followed by the lactate dehydrogenase and vascular endothelial growth factor assays of most active fraction among all screened for cytotoxic analysis. HPLC analysis of most active fractions against cytotoxicity was performed to check the biological activity of compounds. Results displayed the potent cytotoxic activity of ethyl acetate fraction of S. nigrum against HepG2 cells with IC50 value of 7.89 μg/ml. Other fractions exhibited potent anticancer activity against HepG2 cells followed by HeLa cells. Fractions in our study showed no cytotoxicity in BHK cells. Cytotoxic activity observed in our current study exposed high antiproliferative potential and activity of ethyl acetate fraction against HepG2 cells. The results demonstrated that S. nigrum fractions exhibited anticancer activity against hepatic and cervical cancer cell lines with non-toxic effect in normal cells. These results reveal significant potential of S. nigrum for the therapeutic of cancers across the globe in future.  相似文献   

19.
Non-steroidal anti-inflammatory drugs such as diclofenac exhibit potent anticancer effects. Up to now these effects were mainly attributed to its classical role as COX-inhibitor. Here we show novel COX-independent effects of diclofenac. Diclofenac significantly diminished MYC expression and modulated glucose metabolism resulting in impaired melanoma, leukemia, and carcinoma cell line proliferation in vitro and reduced melanoma growth in vivo. In contrast, the non-selective COX inhibitor aspirin and the COX-2 specific inhibitor NS-398 had no effect on MYC expression and glucose metabolism. Diclofenac significantly decreased glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 1 (MCT1) gene expression in line with a decrease in glucose uptake and lactate secretion. A significant intracellular accumulation of lactate by diclofenac preceded the observed effect on gene expression, suggesting a direct inhibitory effect of diclofenac on lactate efflux. While intracellular lactate accumulation impairs cellular proliferation and gene expression, it does not inhibit MYC expression as evidenced by the lack of MYC regulation by the MCT inhibitor α-cyano-4-hydroxycinnamic acid. Finally, in a cell line with a tetracycline-regulated c-MYC gene, diclofenac decreased proliferation both in the presence and absence of c-MYC. Thus, diclofenac targets tumor cell proliferation via two mechanisms, that is inhibition of MYC and lactate transport. Based on these results, diclofenac holds potential as a clinically applicable MYC and glycolysis inhibitor supporting established tumor therapies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号