首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infectivity of Neoaplectana carpocapsae and Heterorhabditis heliothidis to Apanteles militaris, a gregarious parasite of the armyworm, was deterntined at 100. 1,000, 5,000, and 10,000 nematodes per petri dish. For both nematode species, the percentage of infected A. militaris within a cocoon cluster decreased as inoculum levels decreased. At the highest inoculum level, N. carpocapsae infected an average of 32% of the parasite pupae within a cocoon cluster, whereas H. heliothidis infected an average of 22%. Covariance analysis indicated, however, that N. carpocapsae had significantly greater infectivity than did H. heliothidis. Some of the dauer juveniles of N. carpocapsae on the body of the armyworm contacted the emerging parasites and eventually became enveloped within the silken cocoons. Dauer juveniles produced by N. carpocapsae in parasite pupae could not penetrate and escape from silken cocoons even when the cocoons were placed in a moist environment.  相似文献   

2.
Neoaplectaua carpocapsae developed and reproduced in armyworm hosts infected with a granulosis virus (GV). Macerated tissues of dauer juveniles from GV-infecled hosts had sufficient GV to infect 1st and 2nd instar armyworms. Electron-microscope examination of dauer juveniles and adult female nematodes confirmed the presence of GV in the lumen of the intestine. No GV was observed in other tissues of the nematode.  相似文献   

3.
High pH values (>11.0) cause the dissolution of occlusion bodies of the granulosis virus (GV) of Pseudaletia unipuncta and subsequent inactivation of the virus within 24 hr. The GV is also inactivated within 48 hr by 0.04% formaldehyde. The GV is found in the intestinal lumen of infective third stage nematodes (dauer juveniles) of Neoaplectana carpocapsae when development occurs in GV-infected hosts. The GV in these dauer juveniles retains its infectivity even when the nematodes are placed into an alkaline solution with pH values of 11.1 or 12.1 or in 0.04% formaldehyde up to 336 hr. However, significant loss of infectivity of GV occurs when the nematodes are in formaldehyde but not at high pH values. The dauer juveniles are ensheathed by the second stage cuticle. This cuticle probably protects the GV in the intestinal lumen of the nematode from the high pH and formaldehyde.  相似文献   

4.
Infection of cat flea, Ctenocephalides felis, larvae by the entomophilic nematode Neoaplectana carpocapsae was accomplished in the laboratory. The Breton strain of N. carpocapsae provided higher larval mortality at lower dosages than did the DD-136 strain. Adult nematodes were evident in the insect hemocoel after 48 h; however, no infective third-stage larvae were produced. Larval flea infection increased with an increase in the moisture content of sand from 2% to 7% and of sandy clay from 7% to 12%. Larval flea infection was also obtained on turf containing dauer larvae. Nematode penetration of cocoons with invasion of prepupal and pupal fleas was apparent.  相似文献   

5.
The entomogenous nematode Neoaplectana carpocapsae and its associated bacterium, Xenorhabdus nematophilus, could not infect the pupal stage of the tachinid Compsilura concinnata through the puparium. N. carpocapsae had an adverse effect on 1-, 2- and 3-day-old C. concinnata larvae within the armyworm host in petri dish tests. All 1-day-old larvae treated with nematodes died in their hosts, whereas 61% and 69% of 2- and 3-day-old larvae treated with nematodes, respectively, died. However, the survivors developed to adults. Nine to thirty-seven percent of adult tachinids which emerged from nematode-treated soil (50 nematodes/cm²) were infected with N. carpocapsae. The nematode adversely affects C. concinnata directly by the frank infection of the tachinid and indirectly by causing the premature death of the host which results in tachinid death.  相似文献   

6.
Abstract Axenic Steinernema carpocapsae Agriotos (A24) and Heterorhabditis bacteriophora H06 dauer juveniles were exposed to Spodoptera litura insect cell cultures, and the cell‐free filtrates or cells of different non‐symbiotic microorganism cultures, including Bacillus subtilis, B. thuringiensis, Pseudomonas fluorescens, Micromonospora purpurea, Rhizopus delemar, Pseudomonas aeruginosa, Streptomyces venezuelae, Streptomyces antibioticus, Penicillium citrnum, Ganoderma lucidum, Agaricus bisporus, Pleurotus ostreatus, Rhizobium legumiunosarum, and Photobacterium phosphoreum. None of these cell‐free filtrates or cultures, or insect cell culture triggered recovery of H. bacteriophora H06. However, cell‐free filtrate of P. phosphoreum induced recovery of S. carpocapsae A24, although the cell culture of this bacterium kill the A24 dauer juveniles before recovery. S. litura insect cells provided the nutrients for axenic S. carpocapsae A24 nematode growth and next generation of dauer juveniles were observed. These results further demonstrated that food signals were much more specific to H. bacteriophora than to S. carpocapsae.  相似文献   

7.
At high dosages, infective-stage juveniles of Neoaplectana carpocapsae and Heterorhabditis heliothidis were able to penetrate into and kill the garden millipede. Nematode development was inhibited by host defense reactions which consisted of encapsulation and enmeshment in tracheoles and connective tissue surrounding the millipede's midgut. Foreign bacteria quickly entered the millipede's hemocoel at death and out-competed the nematode's symbiotic bacteria, Xenorhabdus sp. The dauer stages of an unidentified rhabditid nematode were associated with the living millipede. These nematodes reproduced on the millipede's cadaver.  相似文献   

8.
The fungus Hirsutella rhossiliensis is an obligate pathogen with a broad host range among nematodes. Microbivorous nematodes are abundant around plant roots and may serve as hosts for the fungus. Our objective was to determine the influence of the bacterial-feeding nematode Teratorhabditis dentifera on the abundance of H. rhossiliensis. Experiments were conducted in a growth chamber with pots containing pasteurized soil, the fungus, and potato plants. The abundance of infectious conidia was compared in pots with and without T. dentifera after 50 or 70 days. The nematode reached high densities (10-40/cm3 soil) but had no effect on the abundance of conidia. Many individuals were dauer juveniles, a stage that acquired conidia but did not become infected. To test whether this life stage could deplete the pool of conidia in soil, different proportions of dauer juveniles with (resistant) and without (susceptible) a sheath were added to H. rhossiliensis-infested soil. The number of conidia in the soil decreased with an increasing proportion of resistant nematodes. Different stages of T. dentifera appear to have opposing effects on H. rhossiliensis; while adults and regular juveniles acquire conidia, become infected, and produce new infectious conidia, dauer juveniles can deplete the supply of conidia.  相似文献   

9.
《Biological Control》2000,17(1):73-81
The slug, Deroceras reticulatum (Stylommatophora: Limacidae), was exposed to different concentrations of infective dauer juveniles of the rhabditid nematode Phasmarhabditis hermaphrodita, in a two-stage bioassay, at 10°C. Slugs were exposed in groups of 10 or 12 to nematodes in plastic boxes filled with soil aggregates for 3 or 5 days and then transferred individually to petri dishes each containing a disk of Chinese cabbage leaf as food. Subsequently, slug food consumption and survival were measured for 10 to 13 days. Models were developed to describe the way that exposure to the nematode caused inhibition of slug feeding followed by death. Both effects were related to nematode concentrations and time after exposure to the nematode. Following exposure to high concentrations (300,000 dauer juveniles per box), slugs were killed rapidly, within a few days after the end of the exposure period. Following exposure to low concentrations of nematodes (7000 or 15,000 per box), substantial numbers of slugs survived until the end of the bioassay, but feeding activity by these slugs was strongly inhibited. It is suggested that inhibition of slug feeding is important for the success of this nematode as a biocontrol agent.  相似文献   

10.
Several factors that influence the activity of steinernematid and heterorhabditid nematodes against adult Japanese beetles were examined in the laboratory. The effect of nematode concentration on mortality of adult beetles was evaluated using a Petri plate bioassay. The adults were exposed to 1,000 to 10,000 infective stage juveniles (J3) ofSteinernema glaseri per 10 beetles with or without food for 24 hr after which they were held with food for an additional 6 days. The LC50s for males with and without food during exposure were 3,435 and 2,854 J3s/10 adults, respectively. The LC50s for mixtures of males and females with and without food were 5,228 and 1,762 J3s/10 adults respectively. Although mortality occurred during and shortly after exposure, significant additional mortality was observed 1–4 days following exposure. Exposure of males and females with food to 10,000 J3s/10 adults for 6, 12, 18 or 24 hr resulted in 47, 58, 72 and 77% mortality, respectively. Comparative activity ofS. glaseri, S. carpocapsae (All strain),S. feltiae (Biosys experimental cold adapted strain=bibionis),S. feltiae (Biosys experimental strain 27),Heterorhabditis bacteriophora, andHeterorhabditis sp. (Terceiran isolate) was evaluated against adult Japanese beetles using a 24 hr exposure to 8,000 J3s/10 adults. The most virulent species wereS. glaseri, S. feltiae (=bibionis), the Terceiran isolate ofHeterorhabditis andS. carpocapsae producing 55, 44, 36 and 34% mortality respectively. Our results indicate that adult Japanese beetles infected with entomopathogenic nematodes could serve as a mechanism for nematode dispersal.  相似文献   

11.
The development of Bursaphelenchus xylophilus in pine wood infested with and free of Monochamus carolinensis was investigated. Formation of third-stage dispersal juveniles occurred in the presence and absence of pine sawyer beetles. The proportion of third-stage dispersal juveniles in the total nematode population was negatively correlated with moisture content of the wood. Formation of nematode dauer juveniles was dependent on the presence of the pine sawyer beetle. Dauer juveniles were present in 3 of 315 wood samples taken from non-beetle-infested Scots pine bolts and 81 of 311 samples taken from beetle-infested bolts. Nematode densities were greater in wood samples taken adjacent to insect larvae, pupae, and teneral adults compared with samples taken from areas void of insect activity. Nematodes recovered from beetle larvae, pupae, and teneral adults were mostly fourth-stage dauer juveniles, although some third-stage dispersal juveniles were also recovered. Dauer juvenile density was highest on teneral adult beetles.  相似文献   

12.
《Biological Control》2001,20(1):48-56
Infection of cocooned codling moth (cydia pomonella) larvae by the entomopathogenic nematode Steinernema carpocapsae was studied in three field experiments. Factors that varied within or between experiments included method of application, type of substrate containing cocooned larvae, time when nematodes were applied, seasonal effects, and supplemental wetting before or after nematode application. Conventional air-blast sprayer applications of 0.5–5.0 million infective juveniles (IJs)/tree in fall resulted in ca. 30% mortality of larvae in cardboard trap bands, whereas hand-gun application (2 million IJs/tree) produced mortality of ca. 70%. Application in the evening caused higher larval mortality than application in the morning when no supplemental wetting was used after treatments. Morning and evening applications caused equivalent larval mortality when a postwetting treatment was included. In a trial conducted in midsummer, supplemental wetting, either before or after hand-gun application of 1 million IJs/tree, enhanced nematode-produced mortality. Mortality approached 100% if both pre- and postwetting was used. Larvae in exposed cocoons on apple wood were infected at a higher rate (86%) than those on wood in less exposed positions (73%) or in nonperforated cardboard (72%). Mortality rates for larvae in perforated cardboard were intermediate (77%). Application volumes used to deliver nematodes slightly enhanced infection rate of larvae in some substrates but not others. In one trial, parasitism of codling moth by the wasp Mastrus ridibundus (Ichneumonidae) was negatively correlated with nematode infection of codling moth larvae. Dissections showed that ca. 10% of larvae infected by nematodes had been attacked by the wasp.  相似文献   

13.
Pathogenicity of Rhabditis blumi Sudhaus against major cruciferous insect pests was evaluated in the lab and greenhouse. In Petri-dish tests against the insects, including Artogeia rapae L., Mamestra brassicae L., and Plutella xylostella L., insect mortality by R. blumi and its associated bacteria was dose and time dependent, which increased with dose (0?C80 dauer juveniles/larva) and time increments. Pathogenicity against fourth-instar larvae was higher than the rate of corresponding third-instar larvae. The highest insect mortality rate was observed in fourth-instar larvae of P. xylostella, followed by A. rapae, and M. brassicae, with mortality rates of 93.5, 88.2, and 77.8?%, respectively. Lethal dose values at 50?% (LD50) of R. blumi were 25.7 dauer juveniles/larva on P. xylostella; 28.0 dauer juveniles/larva on A. rapae; and 40.6 dauer juveniles/larva on M. brassicae, respectively. In greenhouse tests, P. xylostella larvae were most susceptible to nematodes, with insect reduction rate of 88.0?%. The rate varied with vegetable species and persistence time of live nematodes on vegetable leaves after spraying. Nematodes established in cadavers showed positive correlation with nematode dose, whereas nematode persistence on the leaf was inversely related to hours after treatment.  相似文献   

14.
In vitro studies were carried out on the diamondback moth, Plutella xylostella larvae using an insect entomopathogenic nematode isolate, Steinernema carpocapsae obtained from the Koppert company, the Netherlands. Larvae of P. xylostella were collected from cabbage farms around Mashhad city of Iran. During the study, the responses of larvae at 25?°C for three periods of 24, 48 and 72?h with different concentrations of 0, 5, 10, 20, 40, 80, 160 and 320 third instar larvae of nematode (infective stage?=?IJs) per insect into 10?cm Petri dishes containing filter paper soaked with 1?ml of nematodes suspension were compared. Maximum mortality caused by S. carpocapsae nematode was 88% at 24?h, and it was 100% at 48 and 72 h. With increasing nematode population level and exposure time (ET in hour), mortality of P. xylostella larvae was increased. Based on probit analysis, LC50 values of S. carpocapsae nematode in three test periods were 45.61, 12.02 and 40.80 IJs per insect, respectively. Initial ANOVA was performed for S. carpocapsae nematode. The effect of both nematode population levels (IJ) and ET on third instar larvae of the diamondback moth, P. xylostella and interaction between IJ and ET were significant. In general, it is recommended to apply this nematode in suitable condition for controlling diamondback moth.  相似文献   

15.
The efficacy ofPaecilomyces fumosoroseus (Wize) Brown & Smith,P. farinosus (Holm ex S. F. Gray) Brown & Smith,Beauveria bassiana (Balsamo) Vuillemin,Metarhizium anisopliae (Metschnikoff) Sorokin and an entomoparasitic nematode,Steinernema feltiae (Filipjev), against larvae and pupae of the apple fruit mothArgyresthia conjugella (Zell.) (Lepidoptera: Yponomeutidae) was studied in field and laboratory experiments. All species of fungi and the nematode were highly pathogenic to larvae in Petri dishes. In soil, the pathogenicity ofB. bassiana andP. farinosus for larvae decreased. Pupae inside cocoons were highly susceptible toP. fumosoroseus, but not toP. farinosus orB. bassiana. In the field experiment, treatment of soil with conidia ofP. fumosoroseus at a rate of 1×107 conidia per cm2 reduced the emergence of overwinteredA. conjugella adults by 70.1% compared to untreated control soil.  相似文献   

16.
An alternative approach to applying entomopathogenic nematodes entails the distribution of nematodes in their infected insect hosts. Protection of the infected host from rupturing, and improving ease of handling, may be necessary to facilitate application. In this study our objective was to test the potential of a new method of formulating the infected hosts, i.e., enclosing the infected host in masking tape. Tenebrio molitor L. cadavers infected with Heterorhabditis indica Poinar, Karunakar and David or Steinernema carpocapsae (Weiser) were wrapped in tape using an automatic packaging machine; the machine was developed to reduce labor and to standardize the final product. The effects of the tape formulation on the ability to protect the cadavers from mechanical damage, nematode yield, and pest control efficacy were tested. After exposure to mechanical agitation at 7-d-post-infection, S. carpocapsae cadavers in tape were more resistant to rupture than cadavers without tape, yet H. indica cadavers 7-d-post-infection were not affected by mechanical agitation (with or without tape), nor was either nematode affected when 4-d-old cadavers were tested. Experiments indicated that infective juvenile yield was not affected by the tape formulation. Laboratory experiments were conducted measuring survival of the root weevil, Diaprepes abbreviatus (L.), or the small hive beetle, Aethina tumida Murray, after the application of two H. indica-infected hosts with or without tape per 15 cm pot (filled with soil). A greenhouse experiment was also conducted in a similar manner measuring survival of D. abbreviatus. In all experiments, both the tape and no-tape treatments caused significant reductions in insect survival relative to the control, and no differences were detected between the nematode treatments. Fifteen days post-application, the infected host treatments caused up to 78% control in A. tumida, 91% control in D. abbreviatus in the lab, and 75% in the greenhouse. These results indicate potential for using the tape-formulation approach for applying nematode infected hosts.  相似文献   

17.
Mortality of larval, pupal, and adult western cherry fruit fly, Rhagoletis indifferens (Tephritidae) exposed to the steinernematid nematodes Steinernema carpocapsae, Steinernema feltiae, and Steinernema intermedium, was determined in the laboratory and field. Larvae were the most susceptible stage, with mortality in the three nematode treatments ranging from 62 to 100%. S. carpocapsae and S. feltiae were equally effective against larvae at both 50 and 100 infective juveniles (IJs)/cm2. S. intermedium was slightly less effective against larvae than the other two species. Mortalities of R. indifferens larvae at 0, 2, 4, and 6 days following their introduction into soil previously treated with S. carpocapsae and S. feltiae at 50 IJs/cm2 were 78.6, 92.5, 95.0, and 77.5% and 87.5, 52.5, 92.5, and 70.0%, respectively, and at 100 IJs/cm2 were 90.0, 92.0, 100.0, and 84.0% and 90.0, 50.0, 42.0, and 40.0%, respectively. There was no decline in mortality caused by S. carpocapsae as time progressed, whereas there was in one test with S. feltiae. Larval mortalities caused by the two species were the same in a 1:1:1 vermiculite:peat moss:sand soil mix and a more compact silt loam soil. In the field, S. carpocapsae and S. feltiae were equally effective against larvae. Pupae were not infected, but adult flies were infected by all three nematode species in the laboratory. S. carpocapsae was the most effective species at a concentration of 100 IJs/cm2 and infected 11–53% of adults that emerged. The high pathogenicity of S. carpocapsae and S. feltiae against R. indifferens larvae and their persistence in soil as well as efficacy in different soil types indicate both nematodes hold promise as effective biological control agents of flies in isolated and abandoned lots or in yards of homeowners.  相似文献   

18.
The natural history of many entomopathogenic nematode species remains unknown, despite their wide commercial availability as biological control agents. The ambushing entomopathogenic nematode, Steinernema carpocapsae, and the introduced European earwig, Forficula auricularia, forage on the soil surface. Since they likely encounter one another in nature, we hypothesized that earwigs are susceptible to nematode infection. In the laboratory, the LC50 for F. auricularia was 226 S. carpocapsae/earwig and the reproductive potential was 123.5 infective juvenile nematodes/mg tissue. This susceptibility depended on host body size with significantly higher mortality rates seen in larger earwigs. In a study of host recognition behavior, S. carpocapsae infective juveniles responded to earwig cuticle as strongly as they did to Galleria mellonella cuticle. We also found that earwigs exposed to S. carpocapsae cleaned and scratched their front, middle and back legs significantly more than controls. Coupled with previous field data, these findings lead us to suggest that F. auricularia may be a potential host for S. carpocapsae.  相似文献   

19.
Seven species of bees from the eastern United States, representing four families in the Apoidea, were dissected and examined for nematode associates. Dufour''s glands in females of Halictus ligatus, Augochlora pura mosieri, and Augochlorella gratiosa (Halictidae) from Florida were infested with dauer juveniles of Aduncospiculum halicti (Diplogasteridae). The Dufour''s glands of Colletes thoracicus (Colletidae) females from Maryland were infested with dauer juveniles of a new species of Koerneria sp. (Diplogasteridae), and abdominal glands of females of Andrena alleghaniensis (Andrenidae) from New York were infested with dauer juveniles of another new species of Koerneria. The lateral and median oviducts, Dufour''s glands, and poison sacs in females of Anthophora abrupta (Anthophoridae) from Maryland and Alabama were infested with dauer juveniles of a new species of Bursaphelenchus sp. (Aphelenchoididae). Cross sections of the nematode-infested poison sacs of A. abrupta revealed two types of humoral host defense reactions.  相似文献   

20.
Neuropeptides regulate animal physiology and behavior, making them widely studied targets of functional genetics research. While the field often relies on differential -omics approaches to build hypotheses, no such method exists for neuropeptidomics. It would nonetheless be valuable for studying behaviors suspected to be regulated by neuropeptides, especially when little information is otherwise available. This includes nictation, a phoretic strategy of Caenorhabditis elegans dauers that parallels host-finding strategies of infective juveniles of many pathogenic nematodes. We here developed a targeted peptidomics method for the model organism C. elegans and show that 161 quantified neuropeptides are more abundant in its dauer stage compared with L3 juveniles. Many of these have orthologs in the commercially relevant pathogenic nematode Steinernema carpocapsae, in whose infective juveniles, we identified 126 neuropeptides in total. Through further behavioral genetics experiments, we identify flp-7 and flp-11 as novel regulators of nictation. Our work advances knowledge on the genetics of nictation behavior and adds comparative neuropeptidomics as a tool to functional genetics workflows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号