首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some Effects of Douglas Fir Terpenes on Certain Microorganisms   总被引:5,自引:1,他引:4       下载免费PDF全文
The Douglas fir terpene α-pinene was shown to inhibit the growth of a variety of bacteria and a yeast. Other terpenes of the Douglas fir, including limonene, camphene, and isobornyl acetate, were also inhibitory to Bacillus thuringiensis. All terpenes were inhibitory at concentrations normally present in the fir needle diet of Douglas fir tussock moth larvae. The presence of such terpenes in the diet of these insects was found to strongly influence the infectivity of B. thuringiensis spores for the Douglas fir tussock moth larvae. The terpene α-pinene destroyed the cellular integrity and modified mitochondrial activity in certain microorganisms.  相似文献   

2.
A single type of bacterium, tentatively identified as a member of the genus Bacillus, was isolated from 2 of 20 midguts of Douglas fir tussock moth larvae being fed a diet of fir needles. No bacteria could be isolated from most midguts. Although spherically shaped bodies were present in the food bolus, these bodies, if microorganisms, could not be distinguished from spherical bodies associated with the plant tissue. The Douglas fir tussock moth dietary terpenes were altered during their passage through the insects, with two new terpenes being detected in the feces. One of these was identified as isoborneol. The relative significance of the insect and gut microflora with respect to terpene modification is unresolved. The well-established toxicity of terpenes may account for the near absence of common gut microflora in the insects.  相似文献   

3.
Dosage-mortality tests were carried out with commercial Bacillus thuringiensis (B.T.) (Dipel)® against various instars of the spruce budworm, Choristoneura fumiferana, the white-marked and Douglas fir tussock moths, Hemerocampa leucostigmata and Orgyia pseudotsugata, and the gypsy moth, Porthetria dispar. Dipel was applied as a dilute (10?2) molasses suspension onto artificial diet surface in a spray tower designed to simulate aerial application. Probit analysis of the results showed that LD50s expressed both in terms of gallons deposited per acre and as spores and crystals deposited per cm2 increased with larval age for all species. The spruce budworm was the most sensitive to the bacteria, followed in decreasing order of sensitivity by the white-marked tussock moth, Douglas fir tussock moth, and the gypsy moth. The mean slopes for all instars of the four species were 1.6, 3.1, 2.6, and 2.2, respectively, indicating that precision-wise, the assay of B.T. on artificial medium was good. The relatively low slope for spruce budworm is explained by its peculiar feeding habit. Among all species tested, bacteria-treated larvae gained weight at a considerably reduced rate compared with untreated ones. Reduction in weight resulting from lowered feeding activity intensified as dosage rates increased. The implication of this in terms of mortality assessments in microbial control operations is discussed.It is suggested that 0.02 gallon (4 × 106 International Units) of Dipel Molasses deposited per acre may achieve economic control of fourth- to sixth-instar budworm and first-to second-instar gypsy moths. A deposit rate for second- to fifth-instar white-marked or Douglas fir tussock moths appears to be in the vicinity of 0.01 gallon (2 × 106 IU) per acre.  相似文献   

4.
The peritrophic membrane (PM) in tobacco budworm larvae (Heliothis virescens, Lepidoptera: Noctuidae), is a continuous sac which encloses the food bolus in the midgut and hindgut. The PM is a single-walled structure 3-5 mum thick which is comprised of two main layers or laminae. The laminae may be fused into a single structure or remain separated by a space which may contain additional thin strands of matrix. Staining with an anti-PM antibody and wheat germ agglutinin (WGA) illustrate the laminar nature of the PM and suggest that protein and chitin have co-incident spatial distributions within the matrix. By transmission electron microscopy, the PM is composed of a loose network of fibrils and small granules, the only structural difference among laminae being a compaction of the matrix along the edges of the two limiting laminae facing the endoperitrophic and ectoperitrophic spaces. By scanning electron microscopy, the PM surface has a wrinkled, felt-like texture without pores or slits. Contrary to the classical view that lepidopterans are Type I insects with respect to PM formation in which the PM forms along the full length of the midgut, the PM in the tobacco budworm forms primarily from secretions of specialized midgut epithelial cells at the junction of the foregut and midgut. The secretory cells, their secretions and the nascent PM stain intensely with the anti-PM antibody but not with WGA suggesting that chitin is added more posteriorly. The PM may be supplemented by the addition of minor amounts of matrix material along the length of the midgut. PM synthesis begins during embryogenesis prior to the initiation of feeding. The PM in neonates is only about 0.1 mum thick but otherwise is structurally similar to that in older larvae.  相似文献   

5.
昆虫中肠围食膜蛋白研究进展   总被引:2,自引:0,他引:2  
围食膜是大多数昆虫中肠内壁附着的一层起润滑和保护作用的半透性粘膜, 按其形成方式不同分为Ⅰ型围食膜和Ⅱ型围食膜。围食膜主要由几丁质和蛋白质构成, 其中蛋白质对于维持围食膜的致密结构至关重要, 对围食膜蛋白的破坏可能会对昆虫的正常生长发育造成干扰, 甚至会导致低龄幼虫的死亡。本文介绍了围食膜的组成与结构, 阐述了昆虫围食膜蛋白研究的新发现、并依据结构特征对它们进行了分类, 总结了以围食膜蛋白为新靶标的害虫防治的可能途径, 讨论了当前围食膜蛋白研究的不足, 最后展望了今后围食膜蛋白研究的发展方向。  相似文献   

6.
Light microscopy of native preparations, histology, and electron microscopy have revealed that Phlebotomus duboscqi belongs to a class of sand fly species with prompt development of the peritrophic matrix (PM). Secretion of electron-lucent fibrils, presumably chitin, starts immediately after the ingestion of a blood meal and, about 6 h later, is followed by secretion of amorphous electron-dense components, presumably proteins and glycoproteins. The PM matures in less than 12 h and consists of a thin laminar outer layer and a thick amorphous inner layer. No differences have been found in the timing of the disintegration of the PM in females infected with Leishmania major. In both groups of females (infected and uninfected), the disintegration of the PM is initiated at the posterior end. Although parasites are present at high densities in the anterior part of the blood meal bolus, they escape from the PM at the posterior end only. These results suggest that L. major chitinase does not have an important role in parasite escape from the PM. Promastigotes remain in the intraperitrophic space until the PM is broken down by sand-fly-derived chitinases and only then migrate anteriorly. Disintegration of the PM occurs simultaneously with the morphological transformation of parasites from procyclic forms to long nectomonads. A novel role is ascribed to the anterior plug, a component of the PM secreted by the thoracic midgut; this plug functions as a temporary barrier to stop the forward migration of nectomonads to the thoracic midgut. This work was supported by the Ministry of Education of the Czech Republic (projects MSM0021620828 and LC06009).  相似文献   

7.
昆虫围食膜是由昆虫中肠上皮细胞分泌的非细胞薄膜状结构,主要成份是几丁质、蛋白质和多糖,是昆虫抵御外界侵害的第一道天然屏障,能够保护中肠上皮细胞不受机械损伤并且能够抵御病毒、细菌及其他有害物质,防止化学损伤.昆虫病毒增效蛋白、荧光增白剂和几丁质酶等生物防治促进因子通过与围食膜上特异位点的结合,能够破坏围食膜结构,加速病原微生物对害虫的感染进程.就围食膜组分、结构、功能以及与害虫防治的关系等方面的研究进展进行综述,并且论述了以围食膜为害虫生物防治靶标的应用前景.  相似文献   

8.
In primates the membrane separating the seminiferous epithelium from the interstitial space is composed of one to three (monkey) or two to six layers (man) of myoid cells associated with one to two layers of fibrocyte-like adventitial cells. All these cells are separated from each other by irregular spaces filled with various connective tissue intercellular components. Subjacent to the elements of the seminiferous epithelium is a continuous, often redundant, basement membrane. A similar basement membrane-like material forms a layer next to and over small areas of the plasma membrane of myoid cells. Collagen fibrils grouped in bundles of various sizes are seen in all connective tissue layers but are particularly abundant in the space between the seminiferous epithelium and the innermost layer of myoid cells. Elastic fibrils demonstrated by the Verhoeff iron hematoxylin technique are also present. Composed of a homogeneous material, the elastic fibrils are short, irregular, branching entities with a diameter comparable to or smaller than that of collagen fibrils. In addition, an abundance of microfibrils with a diameter of 12-15 nm is present in the various connective tissue layers. These microfibrils have a densely stained cortex and a lightly stained core. When seen close to the myoid cells, bundles of micro fibrils appear to insert on well defined areas next to the plasma membrane. These areas commonly face the patches of electron-dense material observed on the inner aspect of the plasma membrane of the myoid cells and in which the actin filaments are inserted. Bundles of microfibrils often span the gap between myoid cells of the same layer as well as those of adjacent layers. Microfibrils are also closely related to the surface of elastic fibrils and are seen intertwining with collagen fibrils. Thus microfibrils appear to bridge and bind together adjacent myoid cells and anchor the surface of these cells to the bundles of elastic and collagen fibrils present in the intercellular spaces of the limiting membrane.  相似文献   

9.
The cell of Pyrocystis spp. is covered by an outer layer of material resistant to strong acids and bases. Internal to this layer much of the cell wall is composed of cellulose fibrils. The presence of cellulose fibrils was established by staining raw and ultra-violet–peroxide-cleaned cell walls and by combining X-ray diffraction spectroscopy with electron microscope observation. Carbon replicas of freeze-etched preparations and thin sections of P. lunula walls show outer layers, inside them ca. 24 layers of crossed parallel cellulose fibrils (4–5 nm thick, ca. 12 nm wide), then a region of smaller (ca. 6–12 nm diameter) fibrils in a disperse texture, and then the plasma membrane. Cellulose fibrils in the parallel texture are constructed of 3–5 elementary fibrils ca. 3 nm in diameter. Walls of P. fusiformis and P. pseudonctiluca also have cellulose fibrils in a crossed parallel texture similar to those of P. lunula. The Gymnodinium-type swarmer from lunate P. lunula appears to have a cell wall ultrastructure typical of other “naked” dinoflagellates.  相似文献   

10.
In most insects, the peritrophic matrix (PM) partitions the midgut into different digestive compartments, and functions as a protective barrier against abrasive particles and microbial infections. In a previous study we demonstrated that certain PM proteins are essential in maintaining the PM's barrier function and establishing a gradient of PM permeability from the anterior to the posterior part of the midgut which facilitates digestion (Agrawal et al., 2014). In this study, we focused on the effects of a reduction in chitin content on PM permeability in larvae of the red flour beetle, Tribolium castaneum. Oral administration of the chitin synthesis inhibitor diflubenzuron (DFB) only partially reduced chitin content of the larval PM even at high concentrations. We observed no nutritional effects, as larval growth was unaffected and neutral lipids were not depleted from the fat body. However, the metamorphic molt was disrupted and the insects died at the pharate pupal stage, presumably due to DFB's effect on cuticle formation. RNAi to knock-down expression of the gene encoding chitin synthase 2 in T. castaneum (TcCHS-2) caused a complete loss of chitin in the PM. Larval growth was significantly reduced, and the fat body was depleted of neutral lipids. In situ PM permeability assays monitoring the distribution of FITC dextrans after DFB exposure or RNAi for TcCHS-2 revealed that PM permeability was increased in both cases. RNAi for TcCHS-2, however, led to a higher permeation of the PM by FITC dextrans than DFB treatment even at high doses. Similar effects were observed when the chitin content was reduced by feeding DFB to adult yellow fever mosquitos, Aedes aegypti. We demonstrate that the presence of chitin is necessary for maintaining the PM's barrier function in insects. It seems that the insecticidal effects of DFB are mediated by the disruption of cuticle synthesis during the metamorphic molt rather than by interfering with larval nutrition. However, as DFB clearly affects PM permeability, it may be suitable to increase the efficiency of pesticides targeting the midgut.  相似文献   

11.
Calcofluor disrupts the midgut defense system in insects   总被引:14,自引:0,他引:14  
The insect midgut is generally lined with a unique protective chitin/protein structure, the peritrophic membrane (PM). We demonstrated that in Trichoplusia ni larvae, the majority of PM proteins were assembled with chitin as a consequence of their chitin binding properties. These proteins could be dissociated from the PM in vitro by Calcofluor, a well-known chemical with chitin binding properties. The chitin binding characteristics of PM proteins were confirmed by their high affinity binding in vitro to regenerated chitin. In vivo assays demonstrated that Calcofluor could inhibit PM formation in five lepidopteran insects tested. The inhibition of T. ni PM formation by Calcofluor, was accompanied by increased larval susceptibility to baculovirus infection. Continuous inhibition of PM formation by Calcofluor resulted in retarded larval development and mortality. The destructive effect of Calcofluor on PM formation was demonstrated to be transient and reversible depending on the presence of Calcofluor within the midgut. In addition, degradation of the insect intestinal mucin was observed concurrently with the inhibition of PM formation by Calcofluor. Our studies revealed a potential novel approach to develop strategies for insect control by utilizing chitin binding molecules to specifically target PM formation in a broad range of insect pest species.  相似文献   

12.
The focus of this study was on the characterization and expression of genes encoding enzymes responsible for the synthesis and degradation of chitin, chitin synthase (SfCHSB) and chitinase (SfCHI), respectively, in the midgut of the fall armyworm, Spodoptera frugiperda. Sequences of cDNAs for SfCHSB and SfCHI were determined by amplification of overlapping PCR fragments and the expression patterns of these two genes were analyzed during insect development by RT-PCR. SfCHSB encodes a protein of 1523 amino acids containing several transmembrane segments, whereas SfCHI encodes a protein of 555 amino acids composed of a catalytic domain, a linker region and a chitin-binding domain. SfCHSB is expressed in the midgut during the feeding stages, whereas SfCHI is expressed during the wandering and pupal stages. Both genes are expressed along the whole midgut. Chitin staining revealed that this polysaccharide is present in the peritrophic membrane (PM) only when SfCHSB is expressed. There is little or no chitin in the midgut when SfCHI is expressed. These results support the hypothesis that SfCHSB is responsible for PM chitin synthesis during the larval feeding stages and SfCHI carries out PM chitin degradation during larval-pupal molting, suggesting mutually exclusive temporal patterns of expression of these genes.  相似文献   

13.
There is a a fluid (peritrophic gel) or membranous (peritrophic membrane, PM) film surrounding the food bolus in most insects. The PM is composed of chitin and proteins, of which peritrophins are the most important. It is proposed here that, during evolution, midgut cells initially synthesized chitin and peritrophins derived from mucins by acquiring chitin-binding domains, thus permitting the formation of PM. Since PM compartmentalizes the midgut, new physiological roles were added to those of the ancestral mucus (protection against abrasion and microorganism invasion). These new roles are reviewed in the light of data on PM permeability and on enzyme compartmentalization, fluid fluxes, and ultrastructure of the midgut. The importance of the new roles in relation to those of protection is evaluated from data obtained with insects having disrupted PM. Finally, there is growing evidence suggesting that a peritrophic gel occurs when a highly permeable peritrophic structure is necessary or when chitin-binding molecules or chitinase are present in food.  相似文献   

14.
Summary InGlomus epigaeum Daniels and Trappe, a vesicular-arbuscular mycorrhizal fungus, the mature spore has a complex multi-layered wall containing a regular pattern of wall subunits.The outer wall (2–4 m thick) consists of a simple layer of parallel microfibrils. The inner wall (5–6 m thick) is built from two layers possessing different organization. The innermost layer, near the plasmalemma has a texture of apparently dispersed fibrils, whereas the second layer is regularly organized with an arced texture. Ten to twelve bundles of fibrils connected by apparently bow-shaped fibrils are consistently observed. The appearance of this arced organization depends on the section plane and on the angle of observation in the electron microscope as confirmed by tilting experiments. Wall subunits are evident as straight electron transparent fibrils; particularly well-defined in negatively stained frozen sections: their diameter is about 3.5nm.The regular pattern of wall subunits in this fungal cell wall is compared with the textures shown by cellulose fibrils in algae or higher plants and by chitin fibrils in arthropod cuticle.Research work supported by CNR, Italy. Special grant I.P.R.A.—Sub-project 1. Paper No. 55.  相似文献   

15.
Weber C  Schmid V 《Tissue & cell》1985,17(6):811-822
The ultrastructure and the histochemistry of the fibrous system in the mesogloeal extracellular matrix (ECM) of two hydromedusae (Polyorchis penicillatus and Aglanlha digitale) has been examined. There is a fundamental difference in the architecture of the fibrous system between the two species. In Polyorchis, 60-150 A thick, striated fibrils with periodicities of 60-65 A form a three-dimensional network which fills in the entire ECM of outer and inner mesogloea. In the outer mesogloea vertical fibres (up to 1.8 mum in diameter) penetrate the threedimensional network and branch near the exumbrellar and subumbrellar side. These branches impinge on a dense matrix covering the exumbrellar and subumbrellar surface. In Aglantha the branches of thick vertical fibres anchor at the subumbrellar side in a dense plexus (0.2-0.3 mum in thickness) which consists of two types of fibrils (35-40 and 80-100 nm in diameter). Towards the exumbrellar side the vertical fibres branch and intermingle with a meshwork of non-striated fibrils with uniform diameter (35-40 nm). These fibrils form a laminated structure (about 1 mum in thickness) so that fibrils of each layer course in the same direction but fibrils of adjacent layers run perpendicularly to each other. The banded pattern with periodicities of 600-640 A observed in the electron microscope and by histochemical methods confirm the thick vertical fibres and their branches to be a collagen. There is also strong evidence that the laminated structure in Aglantha represents layers of collagen fibrils.  相似文献   

16.
Chitinase secreted by Leishmania functions in the sandfly vector.   总被引:5,自引:0,他引:5  
Leishmania major parasites ingested with host blood by the sandfly Phlebotomus papatasi multiply confined within the peritrophic membrane. This membrane consists of a chitin framework and a protein carbohydrate matrix and it is secreted around the food by the insect midgut. Histological sections of infected flies show lysis of the chitin layer in the anterior region of the peritrophic membrane that permits the essential forward migration of a concentrated mass of parasites. Both the location and the nature of this disintegration are specific to infected flies. At a later stage the parasites concentrate in the cardiac valve region and subsequently this segment of the fore gut loses its cuticular lining. We have found that chitinase and N-acetylglucosaminidase are secreted by cultured L. major promastigotes, but not by sandfly guts. Hence lysis of the chitin layer of the peritrophic membrane could be catalysed by these enzymes of the parasites. Activity of both enzymes was also observed in other trypanosomatids, including L. donovani, L. infantum, L. braziliensis, Leptomonas seymouri, Crithidia fasciculata and Trypanosoma lewisi.  相似文献   

17.
Abstract Wall surface ultrastructure of Aureobasidium pullulans was studied by freeze-etching. Yeast cells had a smooth wall surface as in typical yeast species. Mycelial cells and chlamydospores had an extra layer on the wall surface made mostly of fibrils. The fibrils were 20 nm in diameter, and thicker than typical major fungal wall skeletal fibrils of β-glucan and chitin. This layer was apparently easily detached from the wall proper, presumably as a result of enzymic activity or by physical means, suggesting that it is a physiologically dispensable wall component.  相似文献   

18.
Peritrophic membrane (PM) secretion and formation occur primarily in the anterior region of the mesenteron in the European corn borer (Ostrinia nubilalis) as determined by light and electron microscopy. Nascent PM first became visible as fibrous linear chitin-containing structures stained with gold-labeled wheat germ agglutinin between and at the tips of the microvilli. No formed PM was visible at the foregut-midgut junction, but a thin single PM appeared first in the lumen between the stomodeal valves and the midgut epithelium. Just posterior to the stomodeal valves, multiple PMs were observed that became progressively thicker and more numerous in the mid and posterior regions of the mesenteron. The PM consists of an orthogonal chitin meshwork with openings slightly larger than the diameters of the microvilli. As it delaminates from the microvilli, the meshwork becomes embedded in proteinaceous matrix that greatly reduces the pore size of the PM.  相似文献   

19.
20.
The aim of this study was to analyze morphologically the peritrophic membrane (PM) of Anticarsia gemmatalis larvae resistant (RL) and non-resistant (susceptible) (SL) to the A. gemmatalis multicapsid nucleopolyhedrovirus (AgMNPV), in the presence of viral infection. Also, in this investigation the results between SL and RL were compared to improve the understanding of the resistance mechanisms to the virus. The PM of SL of A. gemmatalis was less efficient as a barrier against the viral infection since it was found to be more fragile than the PM of RL. The lower chitin content as seen from weaker fluorescent staining in SL as well as the abundance of non-solubilized vesicular materials in the ectoperitrophic space, would cause the malformation of this membrane, facilitating the passage of the virus toward the epithelium of the midgut. On the other hand, in RL, the intensity of WGA (wheat germ agglutinin)-conjugated FITC (fluorescein) reaction of the PM was greater than in SL, making this insect more resistant to infection. We can conclude that the effectiveness of the PM in protecting against pathogens is dependent on the integrity of the epithelial cells of the midgut and of the structural preservation of the PM, being directly implicated in the resistance of A. gemmatalis larvae to AgMNPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号