首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Larvae of the scarabaeid, Cyclocephala hirta, are major pests of turfgrass in California. A field test was conducted against third instars that included the following treatments: untreated control; chemical insecticide (bendiocarb); milky disease bacterium (Bacillus popilliae); and entomopathogenic nematodes (Steinernema feltiae and Heterorhabditis bacteriophora). There were no significant differences in population reduction among the treatments, but the larval population in all plots showed a dramatic decline. The C. hirta population had a natural occurrence of milky disease and blue disease caused by Rickettsiella popilliae. The prevalence of blue disease during the course of the study averaged < 10% but that of milky disease averaged about 20%. More significantly, the soil from all treatment plots when bioassayed for B. popilliae showed that 67–90% of the larvae became infected with this bacterium. None of the larvae became infected with the blue disease organism. We conclude that B. popilliae was occurring in epizootic proportions in our field tests and was a significant mortality factor in causing the decline of the C. hirta population.  相似文献   

3.
4.
5.
In this study, we investigated the mechanisms of spore inactivation by high pressure at moderate temperatures to optimize the sterilization efficiency of high‐pressure treatments. Bacillus subtilis spores were first subjected to different pressure treatments ranging from 90 to 550 MPa at 40°C, with holding times from 10 min to 4 h. These treatments alone caused slight inactivation, which was related to the pressure‐induced germination of the spores. After these pressures treatments, the sensitivity of these processed spores to heat (80°C/10 min) or to high pressure (350 MPa/40°C/10 min) was tested to determine the pressure‐induced germination rate and the advancement of the spores in the germination process. The subsequent heat or pressure treatments were applied immediately after decompression from the first pressure treatment or after a holding time at atmospheric pressure. As already known, the spore germination is more efficient at low pressure level than at high pressure level. Our results show that this low germination efficiency at high pressure seemed not to be related either to a lower induction or a difference in the induction mechanisms but rather to an inhibition of enzyme activities which are involved in germination process. In fact, high pressure was necessary and very efficient in inducing spore germination. However, it seemed to slow the enzymatic digestion of the cortex, which is required for germinated spores to be inactivated by pressure. Although these results indicate that high‐pressure treatments are more efficient when the two treatments are combined, a small spore population still remained dormant and was not inactivated with any holding time or pressure level. Biotechnol. Bioeng. 2010;107: 876–883. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
7.
8.
9.
Aims: It is well established that the bile salt sodium taurocholate acts as a germinant for Clostridium difficile spores and the amino acid glycine acts as a co‐germinant. The aim of this study was to determine whether any other amino acids act as co‐germinants. Methods and Results: Clostridium difficile spore suspensions were exposed to different germinant solutions comprising taurocholate, glycine and an additional amino acid for 1 h before heating shocking (to kill germinating cells) or chilling on ice. Samples were then re‐germinated and cultured to recover remaining viable cells. Only five amino acids out of the 19 common amino acids tested (valine, aspartic acid, arginine, histidine and serine) demonstrated co‐germination activity with taurocholate and glycine. Of these, only histidine produced high levels of germination (97·9–99·9%) consistently in four strains of Cl. difficile spores. Some variation in the level of germination produced was observed between different PCR ribotypes, and the optimum concentration of amino acids with taurocholate for the germination of Cl. difficile NCTC 11204 spores was 10–100 mmol l?1. Conclusions: Histidine was found to be a co‐germinant for Cl. difficile spores when combined with glycine and taurocholate. Significance and Impact of the Study: The findings of this study enhance current knowledge regarding agents required for germination of Cl. difficile spores which may be utilized in the development of novel applications to prevent the spread of Cl. difficile infection.  相似文献   

10.
Steinernema carpocapsae (Breton strain), S. glaseri, and Heterorhabditis bacteriophora were evaluated for their potential to control immature stages of the Japanese beetle, Popillia japonica, on Terceira Island (the Azores). In bioassays carried out at temperatures higher than 15 C, S. glaseri and H. bacteriophora caused 100% mortality of larvae, whereas S. carpocapsae caused 56% larval mortality. At temperatures slightly below 15 C, only S. glaseri remained effective. In field plots, in September, S. glaseri and S. carpocapsae reduced larval populations by 91% and 44%, respectively, when applied at the rate of 10⁶ nematodes/m². In April, S. glaseri caused 31% reduction in numbers of larvae, but S. carpocapsae was ineffective. In colder months (November-February) neither steinernematids nor H. bacteriophora reduced larval populations. Increasing the application rate from 10⁶ to 5 x 10⁶ infective stage S. glaseri per m² increased efficacy from 63% to 79% mortality.  相似文献   

11.
To gain a better understanding of the factors influencing spore adhesion in dairy manufacturing plants, casein-modified glass surfaces were prepared and characterized and their effect on the adhesion kinetics of spores from a Geobacillus sp., isolated from a dairy manufacturing plant (DMP) was assessed using a flow chamber. Surfaces were produced by initially silanizing glass using (3-glycidyloxypropyl) trimethoxysilane (GPS) or (3-aminopropyl) triethoxysilane to form epoxy-functionalized (G-GPS) or amino-functionalized glass (G-NH2) substrata. Casein was grafted to the G-GPS directly by its primary amino groups (G-GPS-casein) or to G-NH2 by employing glutaraldehyde as a linking agent (G-NH2-glutar-casein). The surfaces were characterised using streaming potential measurements, contact angle goniometry, infrared spectroscopy and scanning electron microscopy. The attachment rate of spores suspended in 0.1 M KCl at pH 6.8, was highest on the positively charged (+14 mV) G-NH2 surface (333 spores cm?2 s?1) compared to the negatively charged glass (?22 mV), G-GPS (?20 mV) or G-GPS-casein (?21 mV) surfaces (162, 17 or 6 spores cm?2 s?1 respectively). Whilst there was a clear decrease in attachment rate to negatively charged casein-modified surfaces compared to the positively charged amine surface, there was no clear relationship between surface hydrophobicity and spore attachment rate.  相似文献   

12.
13.
Optical brighteners cansynergistically enhance nucleopolyhedrovirusinfectivity to lepidopteran larvae by blockingthe sloughing of infected primary midgut cellsand inhibiting the formation of the peritrophicmembrane in the hosts. Because of similaritiesin the route of infection, we investigatedwhether optical brighteners would also enhanceinfection with the milky disease bacterium,Paenibacillus popilliae, of Japanesebeetle, Popillia japonica, larvae. Thelarvae were kept in soil mixed with P.popilliae spore preparations and the opticalbrighteners Blankophor BBH, P167, or RKH withperennial ryegrass provided as food. Noenhancing effect of any of the opticalbrighteners on P. popilliae infection wasobserved at a concentration of 0.1% (w/w). Rather, when mixed into the soil at 0.02, 0.1,or 0.5% (w/w) BBH reduced P. popilliaeinfection at the highest rate.  相似文献   

14.
Infections caused by Bacillus spores can be attenuated if the intracellular killing of the organism by macrophages can be enhanced. Glycoconjugate-bearing polymers, which selectively bind to Bacillus spores, were tested for modulation of intracellular killing when added prior to, during, and following macrophage exposure to B. cereus spores. In the absence of glycoconjugates, murine macrophages were ineffective at killing Bacillus spores. In presence of glycoconjugates, however, macrophages efficiently killed spores, whether the glycoconjugates were added to the cells prior to, during, and following spore addition. Glycoconjugates were shown to exert a protective influence on macrophages and increase their activation, as evidenced by viability and lactate dehydrogenase release assays. Increased levels of nitric oxide production by macrophages pretreated with glycoconjugates suggest that, under these conditions, glycoconjugates provide an activation signal to macrophages. These results indicate that glycoconjugates promote killing of Bacillus spores, while increasing macrophage activation level and viability. The selection of glycoconjugate ligands bearing immunomodulating properties could be exploited for vaccine and/or immunomodulator development and/or for the improvement of existing vaccines against B. cereus and B. anthracis.  相似文献   

15.
16.
Bacillus sphaericus strain 1593 and B. thuringiensis serotype H-14 were evaluated for persistence of toxicity against two species of mosquito larvae, Culex quinquefasciatus and Aedes aegypti, in a selected simulating plot in Bangkok. Both strains of bacteria demonstrated larvicidal activity towards both species of mosquito larvae. In tap water, the toxicity of B. sphaericus strain 1593 was found to be greater towards C. quinquefasciatus larvae than A. aegypti larvae, whereas the toxicity of B. thuringiensis serotype H-14 was found to be greater towards A. aegypti larvae than C. quinquefasciatus larvae. The persistence of toxicity of these two bacteria was found to be different. The lethal concentration of B. thuriengiensis H-14 against A. aegypti decreased from LC90 to below LC50 in about 15 weeks when tested in tap water. The decrease was faster in polluted water. The toxicity of B. sphaericus 1593 towards C. quinquefasciatus larvae persisted for at least 9 months in tap water and 6 months in polluted water. The multiplication of bacteria was indicated only in populations of B. sphaericus 1593 tested with C. quinquefasciatus larvae.  相似文献   

17.
Chitin, wheat mash, or brewery compost were incorporated into unfumigated and methyl bromide-fumigated organic soils placed in microplots formed from cylindrical drainage tiles (0.25 m-diam. clay tile). After 3 weeks, Meloidogyne hapla and cell or spore suspensions of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus were individually added to the soils of designated microplots. A B. thuringiensis + S. costaricanus combination was also tested. Lettuce seedlings, cv. Montello, were transplanted into the soils 3 to 4 days later. All the bacterial and fungal antagonists applied without a soil amendment, except the B. thuringiensis + S. costaricanus treatment, reduced root galling and increased lettuce head weight in the unfumigated organic soil, but not in the fumigated soil. All three amendments were also effective against M. hapla and reduced root galling in fumigated and unfumigated soils. Wheat mash amendment increased lettuce head weight in the unfumigated soil. In general, no antagonist × amendment interaction was detected. Soil populations of B. thuringiensis were maintained at ≥4.0 log10 colony-forming units/g organic soil during the first 14 days after planting. However, viable cells of B. thuringiensis were not detected after 49 days.  相似文献   

18.
【目的】明确昆虫病原线虫 Heterorhabditis beicherriana LF品系(LF)与苏云金芽孢杆菌 Bacillus thuringiensis HBF-18菌株(Bt HBF-18)混用后对华北大黑鳃金龟 Holotrichia oblita 幼虫的致病力的协同增效作用,为该害虫的防治提供新的技术措施。【方法】在室内测定了LF在不同使用剂量、不同环境温度及不同土壤湿度条件下对华北大黑鳃金龟7-10日龄幼虫的致病力;通过室内生测测定了Bt HBF-18对LF存活的影响,以及Bt HBF-18与LF两者混用后对7-10日龄华北大黑鳃金龟幼虫的防治效果;同时通过室外盆栽试验测定了两者混用对华北大黑鳃金龟幼虫的防治效果。【结果】华北大黑鳃金龟幼虫死亡率随LF施用剂量和处理时间的增加而升高,其中,侵染期线虫(infective juveniles, IJs)800 IJs/100 μL及以上剂量处理7 d后幼虫死亡率达到了100%;25℃为该线虫侵染的最适宜环境温度;适宜土壤湿度范围为14%~20%,湿度过低或过高都会显著影响其侵染效率。室内生测结果表明, Bt HBF-18处理9 d对华北大黑鳃金龟幼虫的致死中浓度(LC 50 )为 1.44× 10^8 CFU/g土,此浓度对LF的存活基本没有影响。另外,室内生测和室外盆栽试验结果均表明,将LF与Bt HBF-18混用能显著提高对华北大黑鳃金龟幼虫的防治效果,混用后具有不同程度的加成或协同增效作用。室内生测试验中LC 50 Bt+200 IJs/100 μL LF混用处理3 d后,较单独LF和Bt HBF-18处理幼虫死亡率分别提高了约43.07%和36.05%,具有显著的协同增效作用;室外盆栽试验中1/2 LC 50 Bt+1 000 IJs/mL LF, LC 50 Bt+1 000 IJs/mL LF和1/2 LC 50 Bt+1 500 IJs/mL LF均具有协同增效作用,其中1/2 LC 50 Bt+1 500 IJs/mL LF增效作用最佳,较单独LF和Bt HBF-18处理幼虫死亡率分别提高了约38.89%和80.55%。【结论】将昆虫病原线虫LF与Bt HBF-18混用对华北大黑鳃金龟幼虫的防治具有加成或协同增效作用。  相似文献   

19.
Pest control in Saudi Arabia depends on applying chemical insecticides, which have many undesirable considerations and impacts on the environment. Therefore, the aim of this study was to isolate Bacillus thuringiensis from different rhizosphere soil samples in the Jazan region for the biological control of Spodoptera littoralis and Aedes aegypti larvae. The samples were collected from the rhizosphere of different plants located in eight agricultural areas in Jazan, Saudi Arabia. Out of 100 bacterial isolates, four bacterial isolates belonging to Bacillus species were selected namely JZ1, JZ2, JZ3, and JZ4, and identified using classical bacteriological and molecular identification using 16S rRNA. JZ1 and JZ2 isolates were identified as Bacillus thuringiensis. SDS-PAGE analysis and the detection of the Cry1 gene were used to describe the two isolates JZ1 and JZ2 in comparison to Bacillus thuringiensis reference strain Kurstaki HD1 (BTSK) were revealed that slightly different from each other due to the place of their isolation and namely Khlab JZ1 and Ayash JZ2. The EC50 of JZ1 and JZ2 isolates, BTSK, and the commercial biopesticide DiPEL 6.4 DF against the second-instar larvae of Aedes aegypti were 207, 932, 400, and 500 ppm respectively, while EC50 against first-instar larvae of Spodoptera littoralis were 193.93, 589.7, 265.108, and 342.9, ppm respectively. Isolate JZ1 recorded the highest mortality while JZ2 isolate gave the lowest mortality. It can be concluded that the local isolate of JZ1 and JZ2 can be developed for bio formulations to be used in Spodoptera littoralis and Aedes aegypti biological control programs.  相似文献   

20.
Ribosomally synthesized antimicrobial peptides (AMPs) represent an essential component of the ancient and non-specific innate immune system in all forms of life, with the primary role of killing infectious microorganisms. Amphibian skin is one of the richest storehouses for them. Each frog species produces its own set of peptides with up to 10 isoforms, as in the case of the species Rana temporaria. Nowadays, human health is facing two major threats: (i) the increasing emergence of resistant pathogens to one or more available drugs, and (ii) the onset of septic shock, which is associated with the release of lipopolysaccharide (LPS) from the cell walls of Gram-negative bacteria, particularly upon antibiotic treatment. AMPs are considered as potential new anti-infective compounds with a novel mode of action, because many of them can kill bacteria and, at the same time, neutralize the toxic effects of LPS. Recent studies have suggested that the production of large number of structurally similar AMPs within the same animal is a strategy used by nature to increase the spectrum of antimicrobial activities, by using combinations of the peptide's isoforms. The biological rationale for their coexistence within the same organism is discussed. In addition, the distinctive and attractive synergistic effects of temporins in both antimicrobial and anti-endotoxin activities are reviewed, along with their plausible underlying molecular mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号