首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Tricyclic isoxazoles were identified from a screen as a novel class of selective multidrug resistance protein (MRP1) inhibitors. From a screen lead, SAR efforts resulted in the preparation of LY 402913 (9h), which inhibits MRP1 and reverses drug resistance to MRP1 substrates, such as doxorubicin, in HeLa-T5 cells (EC(50)=0.90 microM), while showing no inherent cytotoxicity. Additionally, LY 402913 inhibits ATP-dependent, MRP1-mediated LTC(4) uptake into membrane vesicles prepared from the MRP1-overexpressing HeLa-T5 cells (EC(50)=1.8 microM). LY 402913 also shows selectivity ( approximately 22-fold) against the related transporter, P-glycoprotein, in HL60/Adr and HL60/Vinc cells. Finally, when dosed in combination with the oncolytic MRP1 substrate vincristine, LY 402913 delays the growth of MRP1-overexpressing tumors in vivo.  相似文献   

2.
Structure–activity relationship (SAR) studies on the tricyclic isoxazole series of MRP1 modulators have resulted in the identification of potent and selective inhibitors containing cyclohexyl-based linkers. These studies ultimately identified compound 21b, which reverses drug resistance to MRP1 substrates, such as doxorubicin, in HeLa-T5 cells (EC50 = 0.093 μM), while showing no inherent cytotoxicity. Additionally, 21b inhibits ATP-dependent, MRP1-mediated LTC4 uptake into membrane vesicles prepared from the MRP1-overexpressing HeLa-T5 cells (EC50 = 0.064 μM) and shows selectivity (1115-fold) against the related transporter, P-glycoprotein, in HL60/Adr and HL60/Vinc cells. Finally, when dosed in combination with the oncolytic MRP1 substrate vincristine, 21b showed tumor regression and growth delay in MRP1-overexpressing tumors in vivo.  相似文献   

3.
Lapatinib, a tyrosine kinase inhibitor, is used in the treatment of advanced or metastatic breast cancer overexpressing human epidermal receptor 2 (HER2). Lapatinib can modulate the function of ATP-binding cassette (ABC) transporters (ABCB1 and ABCG2), which are the major mechanism responsible for multidrug resistance (MDR) in cancer. In this study, we investigated the effect of lapatinib on multidrug resistance–associated protein 1 (MRP1 [ABCC1]), MRP2 (ABCC2), MRP4 (ABCC4) and lung relative resistance protein (LRP) drug efflux pumps. We demonstrated that lapatinib could enhance the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells in vitro and in vivo, but no effect in MRP2-, MPR4- and LRP-overexpressing cells. Furthermore, lapatinib significantly increased the accumulation of rhodamine 123 (Rho123) and doxorubicin (DOX) in MRP1-overexpressing cells. However, lapatinib did not alter the protein or mRNA expression levels of MRP1. Further studies showed that the level of phosphorylation of AKT and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) were not altered at the indicated concentrations of lapatinib. In conclusion, lapatinib enhanced the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells by inhibiting MRP1 transport function without altering the level of AKT or ERK1/2 phosphorylation. These findings will encourage the clinical research of lapatinib combined with conventional chemotherapeutic drugs in MRP1-overexpressing cancer patients.  相似文献   

4.
Substrates transported by the 190-kDa multidrug resistance protein 1 (MRP1) (ABCC1) include endogenous organic anions such as the cysteinyl leukotriene C(4). In addition, MRP1 confers resistance against various anticancer drugs by reducing intracellular accumulation by co-export of drug with reduced GSH. We have examined the properties of LY475776, an intrinsically photoactivable MRP1-specific tricyclic isoxazole modulator that inhibits leukotriene C(4) transport by this protein in a GSH-dependent manner. We show that [125I]LY475776 photolabeling of MRP1 requires GSH but is also supported by several non-reducing GSH derivatives and peptide analogs. Limited proteolysis revealed that [(125)I]LY475776 labeling was confined to the 75-kDa COOH-proximal half of MRP1. More extensive proteolysis generated two major 125I-labeled fragments of approximately 56 and approximately 41 kDa, and immunoblotting with regionally directed antibodies showed that these fragments correspond to amino acids approximately 1045-1531 and approximately 1150-1531, respectively. However, an approximately 33-kDa COOH-terminal immunoreactive fragment was not labeled, inferring that the major [125I]LY475776-labeling site resides approximately between amino acids 1150-1250. This region encompasses transmembrane (TM) segments 16 and 17 at the COOH-proximal end of the third membrane spanning domain of the protein. [125I]LY475776 labeling of mutant MRP1 molecules with substitutions of Trp(1246) in TM17 were reduced >80% compared with wild-type MRP1, confirming that TM17 is important for LY475776 binding. Finally, vanadate-induced trapping of ADP inhibited [125I]LY475776 labeling, suggesting that ATP hydrolysis causes a conformational change in MRP1 that reduces the affinity of the protein for this inhibitor.  相似文献   

5.
Despite the clinical use of pentavalent antimonials for more than half a century, their metabolism in mammals and mechanisms of action and toxicity remain poorly understood. It has been proposed that the more active and toxic trivalent antimony form Sb(III) plays a critical role in their antileishmanial activity and toxicity. The aim of this work was to investigate the role of residual Sb(III) both in the antileishmanial/antitumoral activities of the pentavalent meglumine antimoniate and in the MRP1 (multidrug resistance-associated protein 1)-mediated resistance to this drug. Samples of meglumine antimoniate differing in their amount of residual Sb(III) (meglumine antimoniate synthesized either from SbCl5 or from KSb(OH)6 as well as commercially-available meglumine antimoniate) were evaluated in vitro and in vivo on Leishmania amazonensis infections, as well as for their cytotoxicity to normal and MRP1-overexpressing GLC4 cell lines. Although in vitro the two most effective drugs contained the highest levels of Sb(III), no correlation was found in vivo between the antileishmanial activity of meglumine antimoniate and its residual Sb(III) content, suggesting that residual Sb(III) contributes only marginally to the drug antileishmanial activity. On the other hand, the GLC4 cells growth inhibition data strongly suggests a marked contribution of residual Sb(III). Additionally, the potassium salt of antimoniate (non-complexed form of Sb(V)) was found to be more cytotoxic than meglumine antimoniate. Although MRP1-overexpressing GLC4 cells showed a marked resistance to trivalent antimonials, cross-resistance to meglumine antimoniate was observed only for the products that contained relatively high levels of Sb(III) (at least 0.03% by weight), suggesting that MRP1 mediates resistance to Sb(III) but not to Sb(V). In conclusion, our data strongly suggest that residual Sb(III) in pentavalent antimonial drugs does not contribute significantly to their antileishmanial activity, but is responsible for their cytotoxic activity against mammalian cells and the MRP1-mediated resistance to these drugs.  相似文献   

6.
The aim of the present paper is to reinvestigate the role of multidrug resistance P-glycoprotein MDR1 and MDR-associated protein (MRP1) in cholesterol esterification using well-characterized inhibitors. Using specific substrate efflux assay, we show that GF120918 (0.2 microM) and probenecid (5 mM) were specific inhibitors of MDR1 and MRP1, respectively. In HepG2 cells, neither of them affect the esterification of cholesterol derived from the uptake of cholesterol-rich lipoprotein, while both verapamil (100 microM) and progesterone (100 microM) were able to inhibit cholesterol esterification. Similar results were obtained with verapamil, progesterone, and GF120918 in the MDR1-overexpressing cells MCF7/ADR. The capacity of progesterone to reduce cholesterol esterification is not correlated with its ability to inhibit MDR1 but is rather due to direct inhibition of acyl-CoA:cholesterol acyltransferase (ACAT). We conclude that the esterification of cholesterol is not correlated with MDR1 or MRP1 activity, thus excluding their role in the intracellular transport of endocytosis-derived cholesterol.  相似文献   

7.
The multidrug resistance protein 1 (MRP1), involved in multidrug resistance (MDR) of cancer cells, was found to be modulated by verapamil, through stimulation of GSH transport, leading to apoptosis of MRP1-overexpressing cells. In this study, various iodinated derivatives of verapamil were synthesized, including iodination on the B ring, known to be involved in verapamil cardiotoxicity, and assayed for the stimulation of GSH efflux by MRP1. The iodination, for nearly all compounds, led to a higher stimulation of GSH efflux. However, determination of concomitant cytotoxicity is also important for selecting the best compound, which was found to be 10-fold more potent than verapamil. This will then allow us to design original anti-cancer compounds which could specifically kill the resistant cancer cells.  相似文献   

8.
The proteins responsible for reduced glutathione (GSH) export under both basal conditions and in cells undergoing apoptosis have not yet been identified, although recent studies implicate some members of the multidrug resistance-associated protein family (MRP/ABCC) in this process. To examine the role of MRP1 in GSH release, the present study measured basal and apoptotic GSH efflux in HEK293 cells stably transfected with human MRP1. MRP1-overexpressing cells had lower intracellular GSH levels and higher levels of GSH release, under both basal conditions and after apoptosis was induced with either Fas antibody or staurosporine. Despite the enhanced GSH efflux in MRP1-overexpressing cells, intracellular GSH levels were not further depleted when cells were treated with Fas antibody or staurosporine, suggesting an increase in GSH synthesis. MRP1-overexpressing cells were also less susceptible to apoptosis, suggesting that the stable intracellular GSH levels may have protected cells from death. Overall, these results demonstrate that basal and apoptotic GSH release are markedly enhanced in cells overexpressing MRP1, suggesting that MRP1 plays a key role in these processes. The enhanced GSH release, with a concurrent decrease of intracellular GSH, appears to be necessary for the progression of apoptosis.  相似文献   

9.
MRP8 (ABCC11) is a recently identified cDNA that has been assigned to the multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporters, but its functional characteristics have not been determined. Here we examine the functional properties of the protein using transfected LLC-PK1 cells. It is shown that ectopic expression of MRP8 reduces basal intracellular levels of cAMP and cGMP and enhances cellular extrusion of cyclic nucleotides in the presence or absence of stimulation with forskolin or SIN-1A. Analysis of the sensitivity of MRP8-overexpressing cells revealed that they are resistant to a range of clinically relevant nucleotide analogs, including the anticancer fluoropyrimidines 5'-fluorouracil (approximately 3-fold), 5'-fluoro-2'-deoxyuridine (approximately 5-fold), and 5'-fluoro-5'-deoxyuridine (approximately 3-fold), the anti-human immunodeficiency virus agent 2',3'-dideoxycytidine (approximately 6-fold) and the anti-hepatitis B agent 9'-(2'-phosphonylmethoxynyl)adenine (PMEA) (approximately 5-fold). By contrast, increased resistance was not observed for several natural product chemotherapeutic agents. In accord with the notion that MRP8 functions as a drug efflux pump for nucleotide analogs, MRP8-transfected cells exhibited reduced accumulation and increased efflux of radiolabeled PMEA. In addition, it is shown by the use of in vitro transport assays that MRP8 is able to confer resistance to fluoropyrimidines by mediating the MgATP-dependent transport of 5'-fluoro-2'-deoxyuridine monophosphate, the cytotoxic intracellular metabolite of this class of agents, but not of 5'-fluorouracil or 5'-fluoro-2'-deoxyuridine. We conclude that MRP8 is an amphipathic anion transporter that is able to efflux cAMP and cGMP and to function as a resistance factor for commonly employed purine and pyrimidine nucleotide analogs.  相似文献   

10.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent transporter of structurally diverse organic anion conjugates. The protein also actively transports a number of non-conjugated chemotherapeutic drugs and certain anionic conjugates by a presently poorly understood GSH-dependent mechanism. LY475776is a newly developed (125)I-labeled azido tricyclic isoxazole that binds toMRP1 with high affinity and specificity in a GSH-dependent manner. The compound has also been shown to photolabel a site in the COOH-proximal region of MRP1's third membrane spanning domain (MSD). It is presently not known where GSH interacts with the protein. Here, we demonstrate that the photactivateable GSH derivative azidophenacyl-GSH can substitute functionally for GSH in supporting the photolabeling of MRP1 by LY475776 and the transport of another GSH-dependent substrate, estrone 3-sulfate. In contrast to LY475776, azidophenacyl-[(35)S] photolabels both halves of the protein. Photolabeling of the COOH-proximal site can be markedly stimulated by low concentrations of estrone 3-sulfate, suggestive of cooperativity between the binding of these two compounds. We show that photolabeling of the COOH-proximal site by LY475776 and the labeling of both NH(2)- and COOH- proximal sites by azidophenacyl-GSH requires the cytoplasmic linker (CL3) region connecting the first and second MSDs of the protein, but not the first MSD itself. Although required for binding, CL3 is not photolabeled by azidophenacyl-GSH. Finally, we identify non-conserved amino acids in the third MSD that contribute to the high affinity with which LY475776 binds to MRP1.  相似文献   

11.
The multidrug-resistant protein MRP1 (involved in the cancer cell multidrug resistance phenotype) has been found to be modulated by racemic verapamil (through stimulation of glutathione transport), inducing apoptosis of human MRP1 cDNA-transfected baby hamster kidney 21 (BHK-21) cells and not of control BHK-21 cells. In this study, we show that the two enantiomers of verapamil have different effects on MRP1 activity. Only the S-isomer (not the R-isomer) potently induced the death of MRP1-transfected BHK-21 cells. The decrease in cellular glutathione content induced by the S-isomer, which was not observed with the R-isomer, was stronger than that induced by the racemic mixture, indicating that the R-isomer antagonized the S-isomer effect. Both enantiomers altered leukotriene C(4) and calcein transport by MRP1. Thus, the R-isomer behaved as an inhibitor, which was confirmed by its ability to revert the multidrug resistance phenotype toward vincristine. Molecular studies on purified MRP1 using fluorescence spectroscopy showed that both enantiomers bound to MRP1 with high affinity, with the binding being prevented by glutathione. Furthermore, conformational changes induced by the two enantiomers (monitored by sodium iodide accessibility of MRP1 tryptophan residues) were quite different, correlating with their distinct effects. (S)-Verapamil induces the death of potentially resistant tumor cells, whereas (R)-verapamil sensitizes MRP1-overexpressing cells to chemotherapeutics. These results might be of great potential interest in the design of new compounds able to modulate MRP1 in chemotherapy.  相似文献   

12.
The multidrug resistance protein family   总被引:27,自引:0,他引:27  
The human multidrug resistance protein (MRP) family contains at least six members: MRP1, the godfather of the family and well known as the multidrug resistance protein, and five homologs, called MRP2-6. In this review, we summarize what is known about the protein structure, the expression in tissues, the routing in cells, the physiological functions, the substrate specificity, and the role in multidrug resistance of the individual members of the MRP family.  相似文献   

13.
Sensitivity of V79 Chinese hamster cells and V79 cells transfected with human MRP1 gene to several agents inducing oxidative stress was compared. Cells overexpressing MRP1 did not show increased resistance to tert-butyl hydroperoxide, diamide, paraquat, menadione, dichromate and carmustine as estimated by cell survival and DNA damage assessed by comet assay. These findings suggest that overexpression of MRP1 does not confer increased resistance to oxidative stress.  相似文献   

14.

Background  

Multidrug resistance mediated by the multidrug resistance-associated protein 1 (MRP1) decreases cellular drug accumulation. The exact mechanism of MRP1 involved multidrug resistance has not been clarified yet, though glutathione (GSH) is likely to have a role for the resistance to occur. N-acetylcysteine (NAC) is a pro-glutathione drug. DL-Buthionine (S,R)-sulfoximine (BSO) is an inhibitor of GSH synthesis. The aim of our study was to investigate the effect of NAC and BSO on MRP1-mediated vincristine resistance in Human Embryonic Kidney (HEK293) and its MRP1 transfected 293MRP cells. Human Embryonic Kidney (HEK293) cells were transfected with a plasmid encoding whole MRP1 gene. Both cells were incubated with vincristine in the presence or absence of NAC and/or BSO. The viability of both cells was determined under different incubation conditions. GSH, Glutathione S-Transferase (GST) and glutathione peroxidase (GPx) levels were measured in the cell extracts obtained from both cells incubated with different drugs.  相似文献   

15.
The objective of this study was to examine effects of interleukin-6 (IL-6) on the expression and activity of the drug resistance transporters (MDR1 and MRP) in human hepatoma cell lines. Expression and activity of MDR1 and MRP transporters were examined in IL-6-treated and control HuH 7 and HepG2 cells using semi-quantitative RT-PCR analysis and by rhodamine 123 and 5-carboxyfluorescin efflux assays. Results from RT-PCR demonstrated expression of MRP3, MRP6, and MDR1 in HuH 7 cells and expression of MRP1, MRP2, MRP3, MRP6, and MDR1 in HepG2 cells. Compared with controls, treatment of HuH 7 cells with IL-6 (10 ng/mL, 24 h) resulted in a 1.8-fold increase in MRP-mediated efflux of 5-CF with a corresponding 1.5-fold induction of MRP3 mRNA levels (p < 0.05). Similarly, in HepG2 cells, a 2-fold increase in MRP functional activity and a 1.8-fold induction of MRP1 mRNA levels were seen in the IL-6 treated cells (p < 0.05). Treatment of cells with IL-6 was also found to cause significant reductions in the expression and activity of MDR1 in HuH 7 cells, but not in HepG2 cells. Our data suggest that IL-6 induces MRP expression and activity in human hepatoma cell lines. Suppressive effects of IL-6 on MDR1 expression and activity were also observed in HuH 7 cells. This underscores the importance of examining the regulation of multiple drug resistance proteins as these proteins may have opposing regulatory mechanisms in malignant cells.  相似文献   

16.
Multidrug resistance protein 1 (MRP1) is a human ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance to tumor cells by actively effluxing intracellular drugs. To examine the functional significance of intracellular loops (ICLs) in MRP1, we determined the effect of mutation of the amino acid sequence EXXXG, which is conserved in ICL5 and ICL7 of human MRP1, 2 and 3, sulfonylurea receptor (SUR) 1 and 2, and mouse MRP1 and 2. E and G in the ICLs of human MRP1 were mutated to L and P, respectively, and the N-terminal (including ICL5) and C-terminal (including ICL7) wild type or mutant halves of MRP1 were co-expressed in insect cells. The mutation of either ICL5 or ICL7 considerably decreased ATP-dependent LTC4 uptake into vesicles of insect cells expressing mutated MRP1. GSH-dependent photolabeling of MRP1 with an 125I-labeled photoaffinity analog of azido agosterol A (azido AG-A) was abolished by the mutations in ICL5 and ICL7. Mutations in ICL5 of MRP1 almost completely inhibited the labeling of NBD2, but not NBD1, by 8-azido-alpha-[32P]ATP. In contrast, mutations in ICL7 of MRP1 abolished the labeling of both NBDs. Mutation of either ICL5 or ICL7 of MRP1 almost completely inhibited vanadate trapping with 8-azido-alpha-[32P]ATP by both NBD1 and NBD2 domains. These findings indicate that the intramolecular signaling between NBD and ICLs in MRP1 is vital for MRP1 function.  相似文献   

17.
Chen Q  Yang Y  Liu Y  Han B  Zhang JT 《Biochemistry》2002,41(29):9052-9062
Human multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette (ABC) transport superfamily which also includes human multidrug resistance 1 (MDR1) gene product P-glycoprotein (Pgp). Overexpression of MRP1 or Pgp causes multidrug resistance in cancer cells. Different from Pgp, MRP1 contains an extra membrane-spanning domain (MSD1) with a putative extracellular amino terminus in addition to the core structure of two MSDs and two NBDs (nucleotide-binding domains). The structural and functional significance of the additional MSD1 in MRP1 remains elusive. In this study, we generated an IgG1 subclass monoclonal antibody, IU2H10, specific to the amino terminus of human MRP1 and mapped its epitope to 10 amino acids (S8ADGSDPLWD17). It can be used for Western blot, immunoprecipitation, and indirect immunofluorescence studies of human MRP1. However, surprisingly we found that IU2H10 cannot react with MRP1 unless cells are permeabilized. Furthermore, the IU2H10 epitope is exposed extracellularly when the carboxyl-terminal core domain of human MRP1 is deleted. Examination of the amino-terminal sequence of human MRP1 suggests that it consist of mainly coiled structures. These observations provide evidence for a model that is different from the prevailing extracellular location of the amino terminus of human MRP1. It is possible that part of the amino terminus of human MRP1, following exposure to the lumen of the endoplasmic reticulum, is retracted to the cytoplasm.  相似文献   

18.
Cyclic nucleotides are known to be effluxed from cultured cells or isolated tissues. Two recently described members of the multidrug resistance protein family, MRP4 and MRP5, might be involved in this process, because they transport the 3',5'-cyclic nucleotides, cAMP and cGMP, into inside-out membrane vesicles. We have investigated cGMP and cAMP efflux from intact HEK293 cells overexpressing MRP4 or MRP5. The intracellular production of cGMP and cAMP was stimulated with the nitric oxide releasing compound sodium nitroprusside and the adenylate cyclase stimulator forskolin, respectively. MRP4- and MRP5-overexpressing cells effluxed more cGMP and cAMP than parental cells in an ATP-dependent manner. In contrast to a previous report we found no glutathione requirement for cyclic nucleotide transport. Transport increased proportionally with intracellular cyclic nucleotide concentrations over a calculated range of 20-600 microm, indicating low affinity transport. In addition to several classic inhibitors of organic anion transport, prostaglandins A(1) and E(1), the steroid progesterone and the anti-cancer drug estramustine all inhibited cyclic nucleotide efflux. The efflux mediated by MRP4 and MRP5 did not lead to a proportional decrease in the intracellular cGMP or cAMP levels but reduced cGMP by maximally 2-fold over the first hour. This was also the case when phosphodiesterase-mediated cyclic nucleotide hydrolysis was inhibited by 3-isobutyl-1-methylxanthine, conditions in which efflux was maximal. These data indicate that MRP4 and MRP5 are low affinity cyclic nucleotide transporters that may at best function as overflow pumps, decreasing steep increases in cGMP levels under conditions where cGMP synthesis is strongly induced and phosphodiesterase activity is limiting.  相似文献   

19.
MDR results from overexpression of P-glycoprotein (Pgp) and multidrug resistance protein (MRP or MRP1) that function as ATP-dependent efflux pumps. Lung resistance related protein (LRP) is also supposed to be involved in MDR. The human canalicular multispecific organic anion transporter (cMOAT) gene that is responsible for the defects in Dubin-Johnson syndrome was isolated. cMOAT is homologous to MRP1 and supposed to be involved in drug resistance. Human cMOAT cDNA transfected LLC-PK1 cells, LLC/cMOAT-1, have increased resistance to vincristine (VCR), 7-ethyl-10-hydroxycamptothecin (SN-38), and cisplatin. The multidrug resistance (MDR)-reversing agents, cyclosporin A (CsA) and PAK-104P, almost completely reversed the resistance to VCR, SN-38 and cisplatin of LLC/cMOAT-1 cells by interacting with the substrate binding site of cMOAT. Treatment of human colorectal carcinoma SW-620 cells with sodium butyrate(NaB) induced LRP in the cells and conferred resistance to Adrianycin(ADM), VCR, VP-16, gramicidin D and taxol. Two LRP-specific ribozymes inhibited the NaB-induced expression of LRP in SW-620 cells and almost completely abolished their acquisition of the MDR phenotype. The accumulation of ADM, VCR and taxol was not decreased in NaB-treated cells, suggesting that ATP-binding cassette transporters are not involved in the MDR of NaB-treated cells. ADM was mainly located in the nuclei of untreated and the cytoplasm of NaB-treated cells. The accumulation level of ADM in the nuclei isolated from untreated cells or those from treated cells in the presence of anti-LRP polyclonal antibody was higher than that from treated cells in the absence of the antibody. Efflux of ADM from nuclei isolated from NaB-treated cells was enhanced compared with those from untreated cells and NaB-treated cells transfected with a LRP-specific ribozyme. The polyclonal antibody against LRP inhibited the enhanced efflux of ADM from nuclei isolated from NaB-treated cells. These findings indicate that LRP is involved in resistance to ADM, VCR, VP-16, taxol and gramicidin D, and has an important role in the transport of ADM from the nucleus to the cytoplasm.  相似文献   

20.
In a past decade became evident that phosphatidylinositol-3-kinase controlled signal transduction cascade (PI3K/Akt/PTEN/mTOR) is implicated in resistance of tumor cells to anticancer drugs. Another well studied mechanism of multidrug resistance is associated with the activity of drug transporters of ABC superfamily (first of all P-glycoprotein (Pgp), MRP1, BCRP). Several mechanisms of cell defense can be turned on in one cell. The interconnections between different mechanisms involved in drug resistance are poorly studied. In the present study we used PC3 and DU145 human prostate cell lines to show that PTEN functional status determines level of cell resistance to some drugs, it correlates with expression level of MRP1 and BCRP proteins. We showed that Pgp is not involved in development of drug resistance in these cells. Transfection of PTEN into PTEN-deficient PC3 as well as rapamycin treatment caused the inhibition of PI3K/Akt/mTOR signaling and resulted in cell sensitization to the action of doxorubicin and vinblastine. We showed that PTEN transfection leads to the change in expression of MRP1 and BCRP. Our results show that in prostate cancer cells at least two mechanisms of drug resistance are interconnected. PTEN and mTOR signaling were shown: to be involved into regulation of MRP1 and BCRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号