首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A cDNA clone encoding a K+ channel polypeptide with 72% amino acid sequence identity to Drosophila Shal was isolated from rat hippocampus. Functional expression of the cDNA in Xenopus oocytes generated 4-amino-pyridine-sensitive K+ channels displaying rapid inactivation kinetics. The fastest component of inactivation was slowed by the deletion of 3 basic residues in the amino-terminal region. Northern blots revealed that the mRNA encoding this K+ channel polypeptide was expressed at a similar level in the brain and in the heart. In situ hybridization revealed that the mRNA encoding this K+ channel appeared concentrated in the hippocampus, dentate gyrus, and habenular nucleus in the brain. Thus, this K+ channel polypeptide is likely to form some of the A-type K+ channels expressed in the mammalian nervous system and heart.  相似文献   

2.
Expression of IsK in Xenopus oocytes has been obtained in 2 ways: (i) by injection of cardiac polyA+ RNA from neonatal mouse heart; (ii) by injection of a cRNA synthesized in vitro. It was observed that polyA+ RNA not only directs the expression of the IsK channel but also contains purinergic P2 and endothelin receptors. Stimulation of these receptors, that produce intracellular Ca2+ increase together with diacylglycerol production activating protein kinase C, increases IsK activity. The same type of results and the same conclusions were obtained by co-injecting cRNA's corresponding to the 5-HT2 receptor and the IsK channel into oocytes. This stimulatory effect was shown to be due to Ca2+ via a calmodulin-dependent kinase process. Conversely, activation of protein kinase C pathway alone by phorbol esters leads to inhibition of IsK activity.  相似文献   

3.
4.
F Mi  J S Peters    G A Berkowitz 《Plant physiology》1994,105(3):955-964
A K(+)-conducting protein of the chloroplast inner envelope was characterized as a K+ channel. Studies of this transport protein in the native membrane documented its sensitivity to K+ channel blockers. Further studies of native membranes demonstrated a sensitivity of K+ conductance to divalent cations such as Mg2+, which modulate ion conduction through interaction with negative surface charges on the inner-envelope membrane. Purified chloroplast inner-envelope vesicles were fused into an artificial planar lipid bilayer to facilitate recording of single-channel K+ currents. These single-channel K+ currents had a slope conductance of 160 picosiemens. Antibodies generated against the conserved amino acid sequence that serves as a selectivity filter in the pore of K+ channels immunoreacted with a 62-kD polypeptide derived from the chloroplast inner envelope. This polypeptide was fractionated using density gradient centrifugation. Comigration of this immunoreactive polypeptide and K+ channel activity in sucrose density gradients further suggested that this polypeptide is the protein facilitating K+ conductance across the chloroplast inner envelope.  相似文献   

5.
E R Liman  J Tytgat  P Hess 《Neuron》1992,9(5):861-871
The subunit stoichiometry of the mammalian K+ channel KV1.1 (RCK1) was examined by linking together the coding sequences of 2-5 K+ channel subunits in a single open reading frame and tagging the expression of individual subunits with a mutation (Y379K or Y379R) that altered the sensitivity of the channel to block by external tetraethylammonium ion. Two lines of evidence argue that these constructs lead to K+ channel expression only through the formation of functional tetramers. First, currents expressed by tetrameric constructs containing a single mutant subunit have a sensitivity to tetraethylammonium that is well fitted by a single site binding isotherm. Second, a mutant subunit (Y379K) that expresses only as part of a heteromultimer contributes to the expression of functional channels when coexpressed with a trimeric construct but not a tetrameric construct.  相似文献   

6.
7.
The beta-subunit of the voltage-sensitive K(+) (K(v)) channels belongs to the aldo-keto reductase superfamily, and the crystal structure of K(v)beta2 shows NADP bound in its active site. Here we report that K(v)beta2 displays a high affinity for NADPH (K(d) = 0.1 micrometer) and NADP(+) (K(d) = 0.3 micrometer), as determined by fluorometric titrations of the recombinant protein. The K(v)beta2 also bound NAD(H) but with 10-fold lower affinity. The site-directed mutants R264E and N333W did not bind NADPH, whereas, the K(d)(NADPH) of Q214R was 10-fold greater than the wild-type protein. The K(d)(NADPH) was unaffected by the R189M, W243Y, W243A, or Y255F mutation. The tetrameric structure of the wild-type protein was retained by the R264E mutant, indicating that NADPH binding is not a prerequisite for multimer formation. A C248S mutation caused a 5-fold decrease in K(d)(NADPH), shifted the pK(a) of K(d)(NADPH) from 6.9 to 7.4, and decreased the ionic strength dependence of NADPH binding. These results indicate that Arg-264 and Asn-333 are critical for coenzyme binding, which is regulated in part by Cys-248. The binding of both NADP(H) and NAD(H) to the protein suggests that several types of K(v)beta2-nucleotide complexes may be formed in vivo.  相似文献   

8.
The tonoplast K(+) membrane transport system plays a crucial role in maintaining K(+) homeostasis in plant cells. Here, we isolated cDNAs encoding a two-pore K(+) channel (NtTPK1) from Nicotiana tabacum cv. SR1 and cultured BY-2 tobacco cells. Two of the four variants of NtTPK1 contained VHG and GHG instead of the GYG signature sequence in the second pore region. All four products were functional when expressed in the Escherichia coli cell membrane, and NtTPK1 was targeted to the tonoplast in tobacco cells. Two of the three promoter sequences isolated from N. tabacum cv. SR1 were active, and expression from these was increased approximately 2-fold by salt stress or high osmotic shock. To determine the properties of NtTPK1, we enlarged mutant yeast cells with inactivated endogenous tonoplast channels and prepared tonoplasts suitable for patch clamp recording allowing the NtTPK1-related channel conductance to be distinguished from the small endogenous currents. NtTPK1 exhibited strong selectivity for K(+) over Na(+). NtTPK1 activity was sensitive to spermidine and spermine, which were shown to be present in tobacco cells. NtTPK1 was active in the absence of Ca(2+), but a cytosolic concentration of 45 microM Ca(2+) resulted in a 2-fold increase in the amplitude of the K(+) current. Acidification of the cytosol to pH 5.5 also markedly increased NtTPK1-mediated K(+) currents. These results show that NtTPK1 is a novel tonoplast K(+) channel belonging to a different group from the previously characterized vacuolar channels SV, FV, and VK.  相似文献   

9.
Hellmer J  Zeilinger C 《FEBS letters》2003,547(1-3):165-169
The methanogenic and hyperthermophilic deep-sea archaeon Methanococcus jannaschii has three putative K+ channels, MVP (Mj0139), MjK1 (Mj0138.1) and MjK2 (Mj1357). The physiological function of these K+ channels was examined in a viability assay, using the Escherichia coli mutant LB2003 (kup1, DeltakdpABC5, DeltatrkA). While MjK2 expression had no effects on the potassium-dependent phenotype of LB2003, MVP and MjK1 complemented the deficiency at a concentration of 1 mM KCl. In contrast to KcsA, MthK and MVP, MjK1 strongly affected host cell viability at 10 and 100 mM KCl. The toxic effects were less pronounced when growth media were supplemented with the K+ channel blocker BaCl2.  相似文献   

10.
11.
Kochian  L. V.  Garvin  D. F.  Shaff  J. E.  Chilcott  T. C.  Lucas  W. J. 《Plant and Soil》1993,155(1):115-118
Recently, two K+-transport cDNAs, KAT1 and AKT1, were cloned in Arabidopsis thaliana. These cDNAs had structural similarities to K+ channel genes in animals, and also conferred the ability for growth on micromolar levels of K+ when expressed in K+ transport-defective yeast mutants. In this study, we examined the possibility that KAT1 encodes the high-affinity K+ transport system that has been previously characterized in plant roots, by studying the concentration-dependent kinetics of K+ transport for KAT1 expressed in Xenopus oocytes and Saccharomyces cerevisiae. In both organisms, the K+ transport system encoded by KAT1 yielded Michaelis-Menten kinetics with a high Km for K+ (35 mM in oocytes, 0.6 mM in yeast cells). Furthermore, Northern analysis indicated that KAT1 is expressed primarily in the Arabidopsis shoot. These results strongly suggest that the system encoded by KAT1 is not a root high-affinity K+ transporter.  相似文献   

12.
Blot hybridization analysis of mouse DNA with gamma-crystallin-specific cDNAs has detected the presence of a multigene family comprised of at least four related genes. The detailed structure of one of these genes, mouse gamma 4-crystallin (M gamma 4.1), and its corresponding cDNA has been determined. The gene spans approximately 2.6 kilobases (kb) and contains two introns. The gene predicts a polypeptide of 174 amino acids that shares extensive sequence homology with gamma-crystallin polypeptides of other species. The two similar structural domains of the protein correspond exactly to the second and third exons of the gene, supporting an exon-duplication model of gene evolution. The similarity in structure of this gene to that recently reported for a gamma-crystallin gene of the rat (1) suggests that a common structure may exist for all gamma-crystallin genes of the two species. Moreover, a highly conserved region, 50 nucleotides in length, immediately precedes the TATA box of both the mouse and rat genes, suggesting that this sequence may be important in gene regulation.  相似文献   

13.
M L Day  M H Johnson    D I Cook 《The EMBO journal》1998,17(7):1952-1960
We previously have reported that the activity of a 240 pS K+ channel varies during the cell cycle in pre-implantation mouse embryos. In the present study, we show that: (i) the cycling of channel activity is not prevented by inhibiting protein synthesis and hence does not involve cyclin-dependent kinase 1 (cdk1)-cyclin B; and (ii) the cycling of channel activity continues in anucleate zygote fragments with a time course similar to that observed in nucleate fragments. We further demonstrate that: (i) persistent activation of the K+ channel in one-cell embryos arrested in metaphase requires the maintenance of an active cdk1-cyclin B complex; and (ii) both DNA synthesis inhibition with aphidicolin and DNA damage produced by mitomycin C prevent the down-regulation of the channel at the start of S phase by a mechanism that requires tyrosine kinase activation. Thus, the 240 pS K+ channel in these cells is controlled by a previously unsuspected cytoplasmic clock that functions independently of the well-known clock controlling the chromosomal cell cycle, but can interact with it.  相似文献   

14.
15.
16.
17.
Talley EM  Lei Q  Sirois JE  Bayliss DA 《Neuron》2000,25(2):399-410
Inhibition of "leak" potassium (K+) channels is a widespread CNS mechanism by which transmitters induce slow excitation. We show that TASK-1, a two pore domain K+ channel, provides a prominent leak K+ current and target for neurotransmitter modulation in hypoglossal motoneurons (HMs). TASK-1 mRNA is present at high levels in motoneurons, including HMs, which express a K+ current with pH- and voltage-dependent properties virtually identical to those of the cloned channel. This pH-sensitive K+ channel was fully inhibited by serotonin, norepinephrine, substance P, thyrotropin-releasing hormone, and 3,5-dihydroxyphenylglycine, a group I metabotropic glutamate receptor agonist. The neurotransmitter effect was entirely reconstituted in HEK 293 cells coexpressing TASK-1 and the TRH-R1 receptor. Given its expression patterns and the widespread prevalence of this neuromodulatory mechanism, TASK-1 also likely supports this action in other CNS neurons.  相似文献   

18.
19.
Somatostatin inhibits glucagon-secretion from pancreatic alpha cells but its underlying mechanism is unknown. In mouse alpha cells, we found that somatostatin induced prominent hyperpolarization by activating a K+ channel, which was unaffected by tolbutamide but prevented by pre-treating the cells with pertussis toxin. The K+ channel was activated by intracellular GTP (with somatostatin), GTPgammaS or Gbetagamma subunits. It was thus identified as a G protein-gated K+ (K(G)) channel. RT-PCR and immunohistochemical analyses suggested the K(G) channel to be composed of Kir3.2c and Kir3.4. This study identified a novel ionic mechanism involved in somatostatin-inhibition of glucagon-secretion from pancreatic alpha cells.  相似文献   

20.
Most K+ channels in plants are structurally classified into the Shaker family named after the shaker K+ channel in Drosophila. Plant K+ channels function in many physiological processes including osmotic regulation and K+ nutrition. An outwardly rectifying K+ channel, SKOR, mediates the delivery of K+ from stelar cells to the xylem in the roots, a critical step in the long-distance distribution of K+ from roots to the upper parts of the plant. Here we report that SKOR channel activity is strictly dependent on intracellular K+ concentrations. Activation by K+ did not affect the kinetics of voltage dependence in SKOR, indicating that a voltage-independent gating mechanism underlies the K+ sensing process. Further analysis showed that the C-terminal non-transmembrane region of the SKOR protein was required for this sensing process. The intracellular K+ sensing mechanism couples SKOR activity to K+ nutrition status in the 'source cells', thereby establishing a supply-based unloading system for the regulation of K+ distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号