首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine whether exposure to extremely low frequency magnetic field (ELF-MF) affects the normal diurnal rhythm of the pain threshold in mice. Pain thresholds were evaluated in mice using the hot plate test. A significant increase of pain threshold during night was observed compared to that during day. This rhythm was attenuated by both constant exposure to light (LL) and constant exposure to darkness (DD) for 5 days. Under DD exposure, the diurnal rhythm in pain threshold was restored when mice were exposed to ELF-MF (60 Hz, 1.5 mT for 12 h daily, from 08:00 to 20:00 h) for 5 days. The diurnal rhythm was not reversed under dark with reversed ELF-MF cycle (exposure to 1.5 mT from 20:00 to 08:00 h, next day) for 5 days, although pain threshold in the ELF-MF exposed period of night was slightly decreased. The diurnal rhythm of melatonin analgesic effect related to pain threshold was also observed under DD by the exposure of ELF-MF for 5 days, but not for 5 nights. The present results suggest that ELF-MF may participate in the diurnal rhythm of pain threshold by acting on the system that is associated with environmental light-dark cycle.  相似文献   

2.
Summary The electrophysiological and anatomical consequences of diurnal changes in screening pigment position were investigated in the apposition eye of the portunid crabScylla serrata. Intracellular recordings revealed that the acceptance angles of dark-adapted photoreceptors enlarged up to four-fold at night compared with photoreceptors dark-adapted in the day. Furthermore, while light adaptation at night caused acceptance angles to narrow, dark adaptation in the day caused no significant broadening of angles. These electrophysiological changes correlated with pigment movements in the eye observed both histologically and in the deep pseudopupil. It is found that the distal pigment cells change diurnally so that the field-stop which these cells form in front of the photoreceptors is opened in the night and closed in the day time.One feature of the diurnal rhythm is that it prevents photoreceptor fields of view enlarging when eyes are dark adapted in the day. InScylla, photoreceptor fields of view take tens of minutes to narrow upon exposure of crabs to light at night. By preventing a similar broadening in the day, the diurnal rhythm may enable animals suddenly leaving dark refuges to be pre-adapted to daylight. To a range of species which utilise refuges such a mechanism would be of significant advantage, especially after disturbance by predators.We are grateful to Prof. G.A. Horridge for constant encouragement and to Drs. S.B. Laughlin, M. Wilson, S. Shaw and M.F. Land for helpful advice.  相似文献   

3.
Opiate peptides are thought to modulate the pattern of LH release in female rats. We tested the hypothesis that changes in proopiomelanocortin (POMC) gene expression occur in proestrous (PRO) and ovariectomized (OVX) steroid-treated rats which may explain their unique patterns of LH secretion. Using in situ hybridization, we examined whether diurnal changes in POMC gene expression occur in the arcuate nucleus. Four groups of rats were used in this study. 1) PRO rats were used after exhibiting at least two consecutive 4-day estrous cycles; 2) OVX rats were killed 9 days after ovariectomy; 3) estradiol (E2)-treated rats were OVX for 7 days and then treated for 2 days; and 4) E2-progesterone (P4)-treated rats were treated with E2 as described above, and on day 9 at 1030 h, P4 was administered. Rats were killed at 2300, 0300, 1000, 1300, 1500, 1800, or 2300 h, beginning on the evening of diestrous day 2 or day 8 after ovariectomy. POMC gene expression exhibited a diurnal rhythm on PRO. Levels of mRNA rose during the morning, peaked between 0300-1000 h, and decreased by 2300 h. In E2-treated rats, which exhibited a LH surge similar in timing to the PRO surge, POMC mRNA levels exhibited a diurnal rhythm strikingly similar to that observed in PRO animals. OVX abolished the rhythm; however, average POMC mRNA levels across the 24-h period were not significantly different from those in PRO or E2-treated rats. P4 treatment increased POMC mRNA levels by 2300 h compared to those in all other experimental groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.

Background

The loss of diurnal rhythm in blood pressure (BP) is an important predictor of end-organ damage in hypertensive and diabetic patients. Recent evidence has suggested that two major physiological circadian rhythms, the metabolic and cardiovascular rhythms, are subject to regulation by overlapping molecular pathways, indicating that dysregulation of metabolic cycles could desynchronize the normal diurnal rhythm of BP with the daily light/dark cycle. However, little is known about the impact of changes in metabolic cycles on BP diurnal rhythm.

Methodology/Principal Findings

To test the hypothesis that feeding-fasting cycles could affect the diurnal pattern of BP, we used spontaneously hypertensive rats (SHR) which develop essential hypertension with disrupted diurnal BP rhythms and examined whether abnormal BP rhythms in SHR were caused by alteration in the daily feeding rhythm. We found that SHR exhibit attenuated feeding rhythm which accompanies disrupted rhythms in metabolic gene expression not only in metabolic tissues but also in cardiovascular tissues. More importantly, the correction of abnormal feeding rhythms in SHR restored the daily BP rhythm and was accompanied by changes in the timing of expression of key circadian and metabolic genes in cardiovascular tissues.

Conclusions/Significance

These results indicate that the metabolic cycle is an important determinant of the cardiovascular diurnal rhythm and that disrupted BP rhythms in hypertensive patients can be normalized by manipulating feeding cycles.  相似文献   

5.
In the growing chick, ocular elongation is rhythmic, increasing during the day and decreasing at night. Because experimentally induced changes in the rate of ocular elongation are associated with changes in the rate of synthesis of scleral proteoglycans, we asked whether there is a diurnal rhythm in scleral proteoglycan synthesis, whether the rhythm is endogenous, and whether scleras from normal eyes differed from those of faster growing form-deprived eyes. To assess proteoglycan synthesis, we measured the incorporation of labeled sulfate into glycosaminoglycans using two paradigms: (1) punches of sclera were cultured for either 2 or 10 h at various times of day, and (2) punches were cultured in a perifusion system for up to 80 h, and samples of the medium were collected for analysis at 2-h intervals. Synthesis of scleral proteoglycans is higher during the day than during the night. This rhythm persists for at least three cycles in vitro with a period of approximately 24 h. There are no significant differences between rhythms in scleras from normal and form-deprived eyes. Finally, biochemical analyses show the labeled molecule to be similar to aggrecan, the cartilage proteoglycan. We conclude that the synthesis of proteoglycans by scleral chondrocytes is circadian, and we speculate that this rhythm may influence the rhythm in ocular elongation. Accepted: 13 March 1999  相似文献   

6.
Night work is associated with a large range of acute health problems and possibly also health consequences in the long run. Yet, only very few field studies specifically investigate the effects of consecutive night shift on key physiological regulatory systems. In this field study, we investigated the effects of consecutive night shifts on three hormones, melatonin, cortisol, and testosterone, among police officers at work. More specifically, the aim was to investigate how the diurnal rhythms of melatonin, cortisol, and testosterone responded to two, four, and seven consecutive night shifts and a corresponding number of days for recovery. The study was part of the “In the Middle of the Night” project and included 73 male police officers from five different police districts. The participants were exposed to three intervention conditions: “2+2”: two consecutive night shifts followed by two consecutive day recovery days; “4+4”: four consecutive night shifts followed by four consecutive recovery days; “7+7”: seven consecutive night shifts followed by seven consecutive recovery days. On the last day with night shift and the last recovery day in each intervention, the participants collected saliva samples every 4th hour when awake. The diurnal rhythms of melatonin, cortisol, and testosterone were all affected differently by an increasing number of consecutive night shifts: the amplitude of the melatonin rhythm was suppressed by 4.9% per day (95% CI 1.4–8.2% per day; p = 0.006). The diurnal rhythm of cortisol phase was delayed with an increasing number of night shifts by 33 min/day (95% CI 18–48 min per day; p ≤ 0.001), but did not show any changes in amplitude. For the diurnal rhythm of testosterone, there was no effect of the number of consecutive night shifts and the diurnal rhythm completely followed the sleep/wake cycle. We found that there were no differences in the rhythms of melatonin, cortisol, and testosterone after 2, 4, and 7 recovery days, respectively. In conclusion, we found signs of desynchronization in terms of suppressed amplitude of melatonin and phase delay of salivary cortisol as a consequence of the increasing number of consecutive night shifts among police officers at work. Lack of synchronization has been suggested as a possible mechanism linking night work to disease, but this remains to be determined.  相似文献   

7.
Seawater electrolysis faces fundamental chemical challenges, such as the suppression of highly detrimental halogen chemistries, which has to be ensured by selective catalyst and suitable operating conditions. In the present study, nanostructured NiFe‐layered double hydroxide and Pt nanoparticles are selected as catalysts for the anode and cathode, respectively. The seawater electrolyzer is tested successfully for 100 h at maximum current densities of 200 mA cm?2 at 1.6 V employing surrogate sea water and compared to fresh water feeds. Different membrane studies are carried out to reveal the cause of the current density drop. During long‐term dynamic tests, under simulated day‐night cycles, an unusual cell power performance recovery effect is uncovered, which is subsequently harnessed in a long‐term diurnal day‐night cycle test. The natural day‐night cycles of the electrolyzer input power can be conceived as a reversible catalyst materials recovery treatment of the device when using photovoltaic electricity sources. To understand the origin of this reversible recovery on a molecular materials level, in situ extended X‐ray absorption fine structure and X‐ray near‐edge region spectra are applied.  相似文献   

8.
The diurnal rhythm of activity of Meriones unguiculatus (Milne-Edwards, 1867) is examined under natural and artificial light. The activity of 2 animals in captivity was registered actographically. Meriones unguiculatus seems to be more active during the night than during the day and showsed activity in the forenoon was registered.  相似文献   

9.
Recently, we found that an angiotensin II receptor blocker (ARB) restored the circadian rhythm of the blood pressure (BP) from a nondipper to a dipper pattern, similar to that achieved with sodium intake restriction and diuretics (Fukuda M, Yamanaka T, Mizuno M, Motokawa M, Shirasawa Y, Miyagi S, Nishio T, Yoshida A, Kimura G. J Hypertens 26: 583-588, 2008). ARB enhanced natriuresis during the day, while BP was markedly lower during the night, resulting in the dipper pattern. In the present study, we examined whether the suppression of tubular sodium reabsorption, similar to the action of diuretics, was the mechanism by which ARB normalized the circadian BP rhythm. BP and glomerulotubular balance were compared in 41 patients with chronic kidney disease before and during ARB treatment with olmesartan once a day in the morning for 8 wk. ARB increased natriuresis (sodium excretion rate; U(Na)V) during the day (4.5 ± 2.2 to 5.5 ± 2.1 mmol/h, P = 0.002), while it had no effect during the night (4.3 ± 2.0 to 3.8 ± 1.6 mmol/h, P = 0.1). The night/day ratios of both BP and U(Na)V were decreased. The decrease in the night/day ratio of BP correlated with the increase in the daytime U(Na)V (r = 0.42, P = 0.006). Throughout the whole day, the glomerular filtration rate (P = 0.0006) and tubular sodium reabsorption (P = 0.0005) were both reduced significantly by ARB, although U(Na)V remained constant (107 ± 45 vs. 118 ± 36 mmol/day, P = 0.07). These findings indicate that the suppression of tubular sodium reabsorption, showing a resemblance to the action of diuretics, is the primary mechanism by which ARB can shift the circadian BP rhythm into a dipper pattern.  相似文献   

10.
Holstein cows exposed to simulated summer diurnal ambient temperature cycles of Phoenix, Arizona and Atlanta, Georgia and diurnal modifications of these climates displayed daily cycles fluctuations in plasma thyroxine (T4) and rectal temperatures (Tre). There were daily diurnal changes in T4 and Tre under all simulated climate conditions. Maximal values generally occurred in the evening hours and minimum values in the morning. Although the diurnal rhythm was influenced by the various simulated climates (diurnal modifications) a diurnal rhythm was very evident even under constant conditions at thermoneutral (Tnc) and at cyclic thermoneutral conditions (TN). The major significance of the study is that the initiation of night cooling of the animals at a time when their Tre was highest was most beneficial to maintenance of a TN plasma T4 level. There was a highly significant negative relationship of average T4 and average Tre. There was also a significant negative relationship of feed consumption and average temperature-humidity index (THI).These data suggest that night cooling may be a most effective method to alleviate thermoregulatory limitations of a hot climate on optimal animal performance. Decreasing the night time air temperature (Ta) or THI or increasing the diurnal range allows the cows to more easily dissipate excess body heat accumulated during the day and minimize the thermal inhibition on feed intake, and alterations in plasma T4 and Tre.Contribution from the Missouri Agriculture Experimental Station.Reference to a company or product name is for specific information only and does not imply approval or recommendation of product by the University of Missouri or the U.S. Department of Agriculture to the exclusion of others that may be suitable.  相似文献   

11.
With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ~150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ~150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent. (Author correspondence: )  相似文献   

12.
Blood pH, PCO2 and PO2 of Dipsosaurus dorsalis were measured during the day and at night. Lizards at constant body temperature (25, 37 degrees C) and lizards experiencing diurnal changes in body temperature similar to those in nature were studied. In lizards at constant body temperatures, blood pH was about 0.1 unit less and blood PCO2 was 4-7 Torr higher at night compared to day. Similar patterns were seen in lizards on natural thermal cycles. Intracellular pH (pHi) of skeletal muscle, esophagus and liver was about 0.2 units lower at night than day but myocardial pHi was unchanged. Reduction in breathing frequency, and thus a relative hypercapnia from hypoventilation was consistent with the nocturnal acidification of the blood and intracellular compartments. Nocturnal acidification (CO2 retention) corresponds to periods of minimum metabolism. The possible impacts of diurnal shifts in hydrogen ion concentration on energy metabolism and metabolic regulation are discussed.  相似文献   

13.
In the leaves of plants that are grown in the natural environment, the accumulation of mRNAs encoding the chlorophyll a/b binding proteins (CAB) follow a circadian rhythm. It is generally accepted that the day/night (sunset, light/dark) or night/day (sunrise, dark/light) transitions play an important role in the synchronization of the rhythm and the determination of the accumulation amplitude. As the results of the experiments presented in this paper indicate, temperature alterations also support the setting and the arrangement of the rhythm. Apparently, simulating “day/night” temperature alternations influences the tomato (Lycopersicon esculentum) plants to express a typical circadian oscillation pattern of cab mRNAs. This rhythm was sustained in the plants after long-term exposure to an alternating temperature regime. In constant conditions, e.g. continuous illumination at either 18°C or 24°C or in continuous darkness at 24°C, this diurnal fluctuation pattern with a period of about 24 hours remained present for at least 2 days.  相似文献   

14.
Under poor light conditions, as normally used during winter production of greenhouse vegetables, the nitrate concentration in the shoot of spinach ( Spinacia oleracea L. cv. Vroeg Reuzenblad) showed a diurnal rhythm. This rhythm was mainly caused by a decrease during the day, followed by an increase during the night in the leaf blade nitrate concentration. Nitrate was mainly located in the vacuoles of the leaf blades. A strong correlation was found between net uptake of nitrate by the roots and the nitrate concentration in the leaf blade vacuoles. The nitrate concentration in the leaf blades increased during the initial hours of the night. This increase was caused by a marked increase in the net uptake rate of nitrate by the roots during the first hours of the dark period. During the second part of the night both net uptake rate of nitrate by the roots and the vacuolar nitrate concentration in the leaf blades remained constant.
We conclude that nitrate is taken up for osmotic purposes when light conditions are poor because of a lack of organic solutes. During the night, nitrate influx into the vacuole is needed for replacement of organic solutes, which are metabolized during the night, and possibly also for leaf elongation growth. During the day, vacuolar nitrate may be exchanged for newly synthesized organic solutes and be metabolized in the cytoplasm. A strong diurnal rhythm in nitrate reductase (NR; EC 1.6.6.1.) activity was absent, due to the poor light conditions, and in vitro NR activity was not correlated with nitrate flux from the roots. In vivo NR activity also lacked a strong diurnal rhythm, but it was calculated that in situ nitrate reduction was much lower during the night, so that the major nitrate assimilation took place during the day.  相似文献   

15.
Because the effect of exercise on leptin was not established, we controlled energy intake (I) and exercise energy expenditure (E) to distinguish the independent effects of energy availability (A = I - E) and exercise stress (everything associated with exercise except its energy cost) on the diurnal leptin rhythm in healthy young women. In random order, we set A = 45 and 10 kcal. kg lean body mass(-1) (LBM) x day(-1) for 4 days during the early follicular phase of separate menstrual cycles in sedentary (S, n = 7) and exercising (X, n = 9: E = 30 kcal x kg LBM(-1) x day(-1)) women. Low energy availability suppressed the 24-h mean (P < 10(-6)) and amplitude (P < 10(-5)), whereas exercise stress did not (both P > 0.2). Suppressions of the 24-h mean (-72 +/- 3 vs. -53 +/- 3%, P < 0.001) and amplitude (-85 +/- 3 vs. -58 +/- 6%, P < 0.001) were more extreme in S vs. X than previously reported effects on luteinizing hormone pulsatility and carbohydrate availability. Thus the diurnal rhythm of leptin depends on energy, or carbohydrate, availability, not intake, and exercise has no suppressive effect on the diurnal rhythm of leptin beyond the impact of its energy cost on energy availability.  相似文献   

16.
Single electrode clamp techniques demonstrated diurnal changes in photoreceptor membrane conductance, recorded intracellularly in the intact, dark-adapted retina of the locust Schistocerca gregaria. In the day, locust photoreceptors exhibited the membrane properties of fast cells, as previously defined in rapidly moving diurnal Diptera. Depolarization activated a powerful potassium conductance with two kinetic components, one rapidly activating close to resting potential and the other activating more slowly when further depolarized, giving a pronounced delayed rectification. There was little inactivation. At night, locust photoreceptors resembled slow cells, as defined in weakly flying crepuscular and nocturnal Diptera. Depolarization rapidly activated an outward current which then inactivated over 100 ms to reduce rectification. The change from day to night state was mimicked by applying 10 mM serotonin extracellularly to the retina. We conclude that the potassium conductances of locust photoreceptor membranes are modulated according to a diurnal rhythm, possibly by serotonin. This neuromodulation is used to match photoreceptor membrane properties to photic habitat. Our findings suggest a definite and potentially widespread function for serotonin as a mediator of diurnal changes in the insect visual system.  相似文献   

17.
Recent studies suggest a diurnal periodicity in the deposition of fusiform crystals by scleractinian corals. In order to check whether this is universally true in the Scleractinia, the surface structure of skeletons of Galaxea fascicularis (L.), collected at 3 h intervals over 1 day was observed with a scanning electron microscope. Fusiform crystals 0.3–3 m wide and 0.5–5 m long were found on the growing edges of septa of polyps collected at different times of day. There was no apparent diurnal change in the mean diameter of fusiform crystals. The size distributions of these crystals were almost the same by day (1200 h) and at night (2400 h). Small fusiform crystals which appeared to have been newly deposited were observed on septa collected both during the day and at night. The present study suggests that fusiform crystals are deposited continuously with no diurnal rhythm in G. fascicularis.  相似文献   

18.
With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ~150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ~150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent.  相似文献   

19.
The state of contraction of crustacean chromatophores is knownto be dependent on a variety of hormones secreted by variousparts of the nervous system. For the fiddler crab the stateof the chromatophores varies with the time of day and is littleaffected by changes in light intensity or background. An additionalfactor influencing chromatophores is a lunar-tidal rhythm. Theeffects of naturally-changing photoperiods and of a constantartificial photoperiod on the condition of the chromatophoresof Uca pugnax are described. The lunar-tidal rhythm is seento affect the chromatophores at hours transitional between theday and night phase for at least 2 months after the animalsare removed from tidal conditions. The time of entrance intothe night phase of the diurnal rhythm varies widely as a functionof phase of the moon when the animals are exposed to long photoperiods.Short photoperiods restrict the range of this variation butappear to have little effect on the minimum duration of theday phase in any 15-day period. Consideration of both diurnaland tidal rhythms may permit selection of times of maximum differencesin chromatophores which might also reflect maximum differencesin neurosecretory activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号