首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effects of quinine and tetraethylammonium (TEA) on single-channel K+ currents recorded from excised membrane patches of the insulin-secreting cell line RINm5F were investigated. When 100 microM quinine was applied to the external membrane surface K+ current flow through inward rectifier channels was abolished, while a separate voltage-activated high-conductance K+ channel was not significantly affected. On the other hand, 2 mM TEA abolished current flow through voltage-activated high-conductance K+ channels without influencing the inward rectifier K+ channel. Quinine is therefore not a specific inhibitor of Ca2+-activated K+ channels, but instead a good blocker of the Ca2+-independent K+ inward rectifier channel whereas TEA specifically inhibits the high-conductance voltage-activated K+ channel which is also Ca2+-activated.  相似文献   

3.
4.
Granule cells acutely dissociated from the dentate gyrus of adult rat brains displayed a single class of high-threshold, voltage-activated (HVA) Ca2+ channels. The kinetics of whole-cell Ca2+ currents recorded with pipette solutions containing an intracellular ATP regenerating system but devoid of exogenous Ca2+ buffers, were fit best by Hodgkin-Huxley kinetics (m2h), and were indistinguishable from those recorded with the nystatin perforated patch method. In the absence of exogenous Ca2+ buffers, inactivation of HVA Ca2+ channels was a predominantly Ca(2+)-dependent process. The contribution of endogenous Ca2+ buffers to the kinetics of inactivation was investigated by comparing currents recorded from control cells to currents recorded from neurons that have lost a specific Ca(2+)-binding protein, Calbindin-D28K (CaBP), after kindling-induced epilepsy. Kindled neurons devoid of CaBP showed faster rates of both activation and inactivation. Adding an exogenous Ca2+ chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), to the intracellular solution largely eliminated inactivation in both control and kindled neurons. The results are consistent with the hypothesis that endogenous intraneuronal CaBP contributes significantly to submembrane Ca2+ sequestration at a concentration range and time domain that regulate Ca2+ channel inactivation.  相似文献   

5.
6.
Voltage-activated currents were studied in whole-cell patch-clamped rat neocortical neurons growing in culture and treated with tunicamycin (TU), an inhibitor of protein N-glycosylation. The size of the Na+ current decreased progressively in the presence of TU (1-2 microM). This decrease was faster in growing 5-14 day-old neurons (to ca. 40% of control after 24 hours of treatment) than in fully grown 20-40-day-old neurons (to ca. 40% of control after 68 hours of treatment). The fast transient K+ current (A-current) was abolished, and the delayed rectifier K+ current was markedly reduced by a 24 hour treatment with TU (1-2 microM) in growing neurons. In contrast, in fully grown neurons these currents were unaffected by the same TU treatment. The size of the Ca2+ current was significantly reduced following a 24 hour treatment with TU (1-2 microM) in neurons at early stages of differentiation, but remained stable in 20-40-day-old neurons. It is concluded that protein glycosylation, presumably of the channel proteins themselves, is important for the functional expression of voltage-activated channels in embryonic cortical neurons during the early stages of cell growth in culture; the channels become less dependent on glycosylation in mature neurons.  相似文献   

7.
Ca2+ permeation in cyclic nucleotide-gated channels.   总被引:4,自引:1,他引:3       下载免费PDF全文
C Dzeja  V Hagen  U B Kaupp    S Frings 《The EMBO journal》1999,18(1):131-144
Cyclic nucleotide-gated (CNG) channels conduct Na+, K+ and Ca2+ currents under the control of cGMP and cAMP. Activation of CNG channels leads to depolarization of the membrane voltage and to a concomitant increase of the cytosolic Ca2+ concentration. Several polypeptides were identified that constitute principal and modulatory subunits of CNG channels in both neurons and non-excitable cells, co-assembling to form a variety of heteromeric proteins with distinct biophysical properties. Since the contribution of each channel type to Ca2+ signaling depends on its specific Ca2+ conductance, it is necessary to analyze Ca2+ permeation for each individual channel type. We have analyzed Ca2+ permeation in all principal subunits of vertebrates and for a principal subunit from Drosophila melanogaster. We measured the fractional Ca2+ current over the physiological range of Ca2+ concentrations and found that Ca2+ permeation is determined by subunit composition and modulated by membrane voltage and extracellular pH. Ca2+ permeation is controlled by the Ca2+-binding affinity of the intrapore cation-binding site, which varies profoundly between members of the CNG channel family, and gives rise to a surprising diversity in the ability to generate Ca2+ signals.  相似文献   

8.
ABSTRACT: In the retina, the ability to encode graded depolarizations into spike trains of variable frequency appears to be a specific property of retinal ganglion neurons (RGNs). To deduce the developmental changes in ion conductances underlying the transition from single to repetitive firing, patch-clamp recordings were performed in the isolated mouse retina between embryonic day 15 (E15) and postnatal day 5 (P5). Immature neurons of the E15 retina were selected according to their capacity to generate voltage-activated Na+ currents (I(Na)(v)). Identification of P5 RGNs was based on retrograde labeling, visualization of the axon, or the amplitude of I(Na)(v). At E15, half of the cells were excitable but none of them generated more than one spike. At P5, all cells were excitable and a majority discharged in tonic fashion. Ion conductances subserving maintenance of repetitive discharge were identified at P5 by exposure to low extracellular Ca2+, Cd2+, and charybdotoxin, all of which suppressed repetitive discharge. omega-Conotoxin GVIA and nifedipine had no effect. We compared passive membrane properties and a variety of voltage-activated ion channels at E15 and P5. It was found that the density of high voltage-activated (HVA) Ca2+ currents increased in parallel with the development of repetitive firing, while the density of Ni2+-sensitive low voltage-activated (LVA) Ca2+ currents decreased. Changes in density and activation kinetics of tetrodotoxin-sensitive Na+ currents paralleled changes in firing thresholds and size of action potentials, but seemed to be unrelated to maintenance of repetitive firing. Densities of A-type K+ currents and delayed rectifier currents did not change. The results suggest that HVA Ca2+ channels, and among them a toxin-resistant subtype, are specifically engaged in activation of Ca2+-sensitive K+ conductance and thereby account for frequency coding in postnatal RGNs.  相似文献   

9.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

10.
The actions of crude venom from Anemesia species of spider were investigated in cultured dorsal root ganglion neurones from neonatal rats and hippocampal slices. Using mass spectrometry (MALDI-TOF MS), 10-12 distinct peptides with masses between about 3 and 10kDa were identified in the crude spider venom. At a concentration of 5 microg/ml crude Anemesia venom transiently enhanced the mean peak whole cell voltage-activated Ca(2+) current in a voltage-dependent manner and potentiated transient increases in intracellular Ca(2+) triggered by 30mM KCI as measured using Fura-2 fluorescence imaging. Additionally, 5-8 microg/ml Anemesia venom increased the amplitude of glutamatergic excitatory postsynaptic currents evoked in hippocampal slices. Omega-Conotoxin GVIA (1 microM) prevented the increase in voltage-activated Ca(2+) currents produced by Anemesia venom. This attenuation occurred when the cone shell toxin was applied before or after the spider venom. Anemesia venom (5 microg/ml) created no significant change in evoked action potentials but produced modest but significant inhibition of voltage-activated K(+) currents. At a concentration of 50 microg/ml Anemesia venom only produced reversible inhibitory effects, decreasing voltage-activated Ca(2+) currents. However, no significant effects on Ca(2+) currents were observed with a concentration of 0.5 microg/ml. The toxin(s) in the venom that enhanced Ca(2+) influx into sensory neurones was heat-sensitive and was made inactive by boiling or repetitive freeze-thawing. Boiled venom (5 microg/ml) produced significant inhibition of voltage-activated Ca(2+) currents and freeze-thawed venom inhibited Ca(2+) transients measured using Fura-2 fluorescence. Our data suggest that crude Anemesia venom contains components, which increased neuronal excitability and neurotransmission, at least in part this was mediated by enhancing Ca(2+) influx through N-type voltage-activated Ca(2+) channels.  相似文献   

11.
The lipidic polymer, poly-3-hydroxybutyrate (PHB), is found in the plasma membranes of Escherichia col complexed to calcium polyphosphate (CaPPi). The composition, location, and putative structure of the polymer salt complexes led Reusch and Sadoff (1988) to propose that the complexes function as Ca2+ channels. Here we use bilayer patch-clamp techniques to demonstrate that voltage-activated Ca2+ channels composed of PHB and CaPPi are in the plasma membranes of E. coli. Single channel calcium currents were observed in vesicles of plasma membranes incorporated into planar bilayers of synthetic 1-palmitoyl, 2-oleoyl phosphatidylcholine. The channels were extracted from cells and incorporated into bilayers, where they displayed many of the signal characteristics of protein Ca2+ channels: voltage-activated selective for divalent over monovalent cations, permeant to Ca2+, manner by La3+, Co2+, Cd2+, and Mg2+, in that order. The channel-active extract, purified by size exclusion chromatography, was found to contain only PHB and CaPPi. This composition was confirmed by the observation of comparable single channel currents with complexes reconstituted from synthetic CaPPi and PHB, isolated from E. coli. This is the first report of a biological non-proteinaceous calcium channel. We suggest that poly-3-hydroxybutyrate/calcium polyphosphate complexes are evolutionary antecedents of protein Ca2+ channels.  相似文献   

12.
Wang J  Chen G  Lu B  Wu CP 《Neuro-Signals》2003,12(2):78-88
Glial cell line-derived neurotrophic factor (GDNF) is best known for its long-term survival effect on dopaminergic neurons in the ventral midbrain. A recent study showed that acute application of GDNF to these neurons suppresses A-type potassium channels and potentiates neuronal excitability. Here we have characterized the acute effects of GDNF on Ca(2+) channels and synaptic transmission. GDNF rapidly and reversibly potentiated the high voltage-activated (HVA) Ca(2+) channel currents in cultured dopaminergic neurons. Analyses of channel kinetics indicate that GDNF decreased the activation time constant, increased the inactivation and deactivation time constants of HVA Ca(2+) channel currents. Ca(2+) imaging experiments demonstrate that GDNF facilitated Ca(2+) influx induced by membrane depolarization. To investigate the physiological consequences of the Ca(2+) channel modulation, we examined the acute effects of GDNF on excitatory synaptic transmission at synapses made by these dopaminergic neurons, which co-release the transmitter glutamate. Within 3 min of application, GDNF increased the amplitude of spontaneous and evoked excitatory autaptic- or multiple-postsynaptic currents. The frequency as well as the amplitude of miniature excitatory postsynaptic currents was also increased. These results reveal, for the first time, an acute effect of GDNF on synaptic transmission and its potential mechanisms, and suggest that an important function of GDNF for midbrain dopaminergic neurons is the acute modulation of transmission and ion channels.  相似文献   

13.
Whole-cell patch clamp and polarographic oxygen partial pressure (pO2) measurements were used to establish the sensitivity of high-voltage-activated (HVA) Ca2+ channel subtypes of CA1 hippocampal neurons of rats to hypoxic conditions. Decrease of pO2 to 15-30 mm Hg induced a potentiation of HVA Ca2+ currents by 94%. Using selective blockers of N- and L-types of calcium channels, we found that inhibition of L-type channels decreased the effect by 54%, whereas N-type blocker attenuated the effect by 30%. Taking into account the ratio of currents mediated by these channel subtypes in CA1 hippocampal neurons, we concluded that both types of HVA Ca2+ channels are sensitive to hypoxia, however, L-type was about 3.5 times more sensitive to oxygen reduction.  相似文献   

14.
15.
16.
Beta-amyloid protein is thought to underlie the neurodegeneration associated with Alzheimer's disease by inducing Ca(2+)-dependent apoptosis. Elevated neuronal expression of the proinflammatory cytokine interleukin-1beta is an additional feature of neurodegeneration, and in this study we demonstrate that interleukin-1beta modulates the effects of beta-amyloid on Ca(2+) homeostasis in the rat cortex. beta-Amyloid-(1-40) (1 microM) caused a significant increase in (45)Ca(2+) influx into rat cortical synaptosomes via activation of L- and N-type voltage-dependent Ca(2+) channels and also increased the amplitude of N- and P-type Ca(2+) channel currents recorded from cultured cortical neurons. In contrast, interleukin-1beta (5 ng/ml) reduced the (45)Ca(2+) influx into cortical synaptosomes and inhibited Ca(2+) channel activity in cultured cortical neurons. Furthermore, the stimulatory effects of beta-amyloid protein on Ca(2+) influx were blocked following exposure to interleukin-1beta, suggesting that interleukin-1beta may govern neuronal responses to beta-amyloid by regulating Ca(2+) homeostasis.  相似文献   

17.
18.
Neurotrophic factors yield neuroprotection by mechanisms that may be related to their effects as inhibitors of apoptosis as well as their effects on ion channels. The effect of ciliary neurotrophic factor (CNTF) on high-threshold voltage-activated Ca channels in cultured fetal mouse brain cortical neurones was investigated. Addition of CNTF into serum-free growth medium resulted in delayed reduction of the Ca2+ currents. The currents decreased to 50% after 4 h and stabilized at this level during incubation with CNTF for 48 h. Following removal of CNTF the inhibition was completely reversed after 18 h. CNTF reduced the current of all pharmacological subtypes of Ca channels as shown by use of selective blockers of L, N, and P/Q type Ca channels (nifedipine, omega-conotoxin MVIIA, omega-agatoxin IVA). The Ca channel depression was mediated via the CNTF receptor, because enzymatic cleavage of the alpha-subunit glycerophosphatidylinositol anchor of the receptor eliminated the response. The CNTF effect was not elicited through pertussis toxin-sensitive G proteins. Other neurotrophic factors like neurotrophin-3 and insulin-like growth factor-I had no effect on the Ca2+ currents. These results may have important implications for the possible functions of CNTF in the nervous system, such as altered synaptic activity, neuronal excitability and susceptibility to brain ischaemia.  相似文献   

19.
Mebudipine and dibudipine are two newly synthesized dihydropyridine (DHP) calcium channel blockers that have been shown to have considerable relaxant effects on vascular and atrial smooth muscle. The in vitro half-lives of mebudipine and dibudipine are reported to be significantly longer than that of nifedipine. In this study, we investigated the effects of mebudipine and dibudipine on voltage-activated Ca2+ channels on differentiated PC12 cells and compared their potencies to amlodipine. Our results point to absence of voltage-activated Ca2+ currents in undifferentiated PC12 cells. It is also concluded that mebudipine and dibudipine, like amlodipine are L-type calcium channel blockers. When tested in a range of 10-100 microM, mebudipine is at least as potent as amlodipine in inhibition of peak Ba2+ currents in differentiated PC12 cells while dibudipine is significantly less potent compared to amlodipine and mebudipine.  相似文献   

20.
Summary 1. While intracellular calcium concentrations are closely regulated, two types of ion channels in neurons allow calcium influx: both voltage-activated and NMDA-activated channels are significantly permeable to calcium. In this study we compare the effects of lead (Pb2+) on currents carried through voltage-activated calcium channels and NMDA-activated channels.2. Pb2+ reduces voltage-activated calcium channel currents elicited by a voltage jump from –80 to 0 mV at 0.1 to 1 µM, with an IC50 of 0.64 µM and a Hill slope of 1.22. This effect was partially reversible and not voltage dependent. Sodium and potassium currents were relatively unaffected at Pb2+ concentrations sufficient to block calcium channel currents by more than 80%. Pb2+ is, thus, a potent, reversible and selective blocker of voltage-dependent calcium channel currents.3. A fast reversible and slow irreversible blocking action of Pb2+ was found on NMDA-activated currents. When Pb2+ was applied simultaneously with aspartate and glycine (Asp/Gly), the inward currents were rapidly and reversibly reduced in a dose-dependent manner with a minimum effective concentration below 2 µM and a total blockade (>80%) with 100 µM Pb2+. The IC50 was 45 µM and the Hill coefficient 1.1. Preincubation with 50 µM Pb2+ resulted in a greater reduction in the response to Asp/Gly/Pb2+. This effect was reversed within 2 to 5 sec of wash. The lack of voltage dependence suggests that Pb2+ does not block the channel but rather alters the binding of agonists. Prolonged superfusion of a cell with the Asp/Gly/Pb2+-containing external solution resulted in a slow and irreversible decrease in the Asp/Gly activated current. No clear threshold concentration is found for this slow and irreversible effect of Pb2+. This slow action might be more important for neurotoxic effects of Pb2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号