首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Competition between cold phenytoin and [3H]phenytoin binding was observed in normal human brain. Binding was observed in all areas examined. The highest number of sites was in the amygdala (a total of 717.71 fmol/mg protein) and the lowest in the Brodman area (BA) 4 of the motor cortex (153.91 fmol/mg protein) and cerebellar cortex (154.4 fmol/mg protein). In three areas, amygdala, cortex area BA 38 (inferior parietal lobe), and cortex area BA 8 (premotor cortex), two sets of binding sites were observed. In these areas the Kd for the higher affinity sites ranged from 35 to 116 nM, and for the lower affinity site, from 328 to 866 nM. In the four areas where only one binding site was observed the KdS ranged from 164 to 311 nM and the Scatchard plot was linear.  相似文献   

2.
[3H]5-hydroxytryptamine ([3H]serotonin) binds with high affinity (KD 2-12 nM) to a finite number of sites on brain astroglial cells. The number of binding sites in the C6 glioma line is decreased significantly (Bmax = 315 versus 30 fmol/mg) by homogenization. In intact primary cultures, derived from newborn rat brain, the number of binding sites is far greater in cultures of immature astrocytes than in cultures treated with dibutyryl cyclic AMP (Bmax = 1,520 versus 580 fmol/mg). A role for these receptors in development is suggested.  相似文献   

3.
Light microscopic autoradiography was used to visualize the neuroanatomical distribution of nicotinic receptors in rat brain using a novel radioligand, [3H]methylcarbamylcholine (MCC). Specific [3H]MCC binding to slide-mounted tissue sections of rat brain was saturable, reversible and of high affinity. Data analysis revealed a single population of [3H]MCC binding sites with a Kd value of 1.8 nM and Bmax of 20.1 fmol/mg protein. Nicotinic agonists and antagonists competed for [3H]MCC binding sites in slide-mounted brain sections with much greater potency than muscarinic drugs. The rat brain areas containing the highest densities of [3H]MCC binding were in thalamic regions, the medial habenular nucleus and the superior colliculus. Moderate densities of [3H]MCC binding were seen over the anterior cingulate cortex, the nucleus accumbens, the zona compacta of substantia nigra and ventral tegmental area. Low densities of [3H]MCC binding were found in most other brain regions. These data suggest that [3H]MCC selectively labels central nicotinic receptors and that these receptors are concentrated in the thalamus, the medial habenular nucleus and the superior colliculus of the rat brain.  相似文献   

4.
The binding of (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate ([3H]MK-801) and N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) to the N-methyl-D-aspartate (NMDA) receptor complex of human brain has been investigated. Significant differences were noted between the binding of the two ligands in the same tissue samples. Binding of both ligands was stimulated by addition of glutamic acid or glycine. However, addition of both compounds resulted in an additional effect with [3H]MK-801 but not [3H]TCP binding. Saturation analysis revealed approximately twice as many high-affinity sites for [3H]MK-801 (Bmax, 1,500 +/- 300 fmol/mg of protein) than for [3H]TCP (Bmax, 660 +/- 170 fmol/mg of protein). In addition, a low-affinity site was detected for [3H]MK-801 binding but not [3H]TCP binding. The pharmacology of the high-affinity [3H]MK-801 and [3H]TCP binding sites was similar with rank order of potency of inhibitors being MK801 greater than TCP greater than phencyclidine greater than N-allylnormetazocine (SKF 10047). 2-Amino-5-phosphonopentanoate inhibited binding of both ligands with comparable potency whereas both 7-chlorokynurenic acid and ZnCl2 were more potent inhibitors of [3H]MK-801 than of [3H]TCP binding. All compounds examined exhibited Hill coefficients of significantly less than unity. Saturation analysis performed in the striatum revealed that the number of binding sites was the same for both [3H]MK-801 (Bmax, 1,403 +/- 394 fmol/mg) and [3H]TCP (Bmax, 1,292 +/- 305 fmol/mg). Addition of glutamate or glycine stimulated striatal binding but there was no further increase on addition of both together.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The equilibrium binding characteristics of the tritiated GABAA agonist, 5-aminomethyl-3-isothiazolol (thiomuscimol) are described. Using the filtration technique to separate bound- from free-ligand, [3H]thiomuscimol was shown to bind to the GABA(A) receptor site(s) in a saturable manner with a Kd value of 28+/-6.0 nM and a Bmax value of 50+/-4.0 fmol/mg original tissue. In parallel binding experiments, the Kd and Bmax values for [3H]muscimol were determined to be 5.4+/-2.8 nM and 82+/-11 fmol/mg original tissue, respectively. In binding assays using the centrifugation technique, Kd and Bmax values for [3H]thiomuscimol were found to be 116+/-22 nM and 154 13 fmol/mg original tissue, respectively, whereas a Kd value of 16+/-1.8 nM and a Bmax value of 155+/-8.0 fmol/mg original tissue were determined for [3H]muscimol. In comparative inhibition studies using the GABA(A) antagonist SR 95531 and a series of specific GABAA agonists, the binding sites for [3H]thiomuscimol and [3H]muscimol were shown to exhibit similar pharmacological profiles. Autoradiographic studies disclosed similar regional distribution of [3H]thiomuscimol and [3H]muscimol binding sites in rat brain. Highest densities of binding sites were detected in cortex, hippocampus, and cerebellum, whereas low densities were measured in the midbrain structures of rat cortex. In conclusion, the equilibrium GABA(A) receptor binding characteristics of [3H]thiomuscimol are very similar to those of [3H]muscimol.  相似文献   

6.
Attempts were made to label tachykinin NK2 binding sites in the adult rat brain using [125I]neurokinin A (NKA) as ligand in the presence of NK1 and NK3 agonist or antagonist to avoid labelling of NK1 and NK3 binding sites, respectively. A high-affinity, specifically NK2-sensitive, [125I]NKA-binding, temperature-dependent, reversible, sensitive to GTPgammaS and correspondence to a single population of binding sites (K(D) and B(max) values: 2.2 nM and 7.3 fmol/mg protein) was demonstrated on hippocampal membranes. Competition studies performed with tachykinins and tachykinin-related compounds indicated that the pharmacological properties of these NK2-sensitive [125I]NKA binding sites were identical to those identified in the rat urinary bladder and duodenum. NKA, neuropeptide K, and neuropeptide gamma, as well as the potent and selective NK2 antagonists SR 144190, SR 48968 and MEN 10627, presented a nanomolar affinity for these sites. The regional distribution of these NK2-sensitive [125I]NKA binding sites differs markedly from those of NK1 and NK3 binding sites, with the largest labeling being found in the hippocampus, the thalamus and the septum. Binding in other brain structures was low or negligible. A preliminary autoradiographic analysis confirmed [125I]NKA selective binding in hippocampal CA1 and CA3 areas, particularly, and in several thalamic nuclei.  相似文献   

7.
The anatomic distribution of high- and low-affinity cardiac glycoside binding sites in the nervous system is largely unknown. In the present study the regional distribution and properties of these sites were determined in rat brain by quantitative autoradiography (QAR). Two populations of cardiac glycoside binding sites were demonstrated with [3H]-ouabain, a specific inhibitor of Na,K-ATPases: (a) high-affinity binding sites with Kd values of 22-69 nM, which were blocked by erythrosin B, and (b) low-affinity binding sites with Kd values of 727-1482 nM. Sites with very low affinity for ouabain were not found by QAR. High- and low-affinity [3H]-ouabain binding sites were both found in all brain regions studied, including somatosensory cortex, thalamic and hypothalamic areas, medial forebrain bundle, amygdaloid nucleus, and caudate-putamen, although the distributions of high- and low-affinity sites were not congruent. Low-affinity [3H]-ouabain binding sites (Bmax = 222-358 fmol/mm2) were approximately twofold greater in number than high-affinity binding sites (Bmax = 76-138 fmol/mm2) in these regions of brain. Binding of [3H]-ouabain to both high- and low-affinity sites was blocked by Na+; however, low-affinity binding sites were less sensitive to inhibition by K+ (IC50 = 6.4 mM) than the high-affinity [3H]-ouabain binding sites (IC50 = 1.4 mM). The QAR method, utilizing [3H]-ouabain under standard conditions, is a valid method for studying modulation of Na,K-ATPase molecules in well-defined anatomic regions of the nervous system.  相似文献   

8.
[3H]Neurotensin ([3H]NT) binds specifically to a single class of binding sites on slides-mounted sections of rat brain 1Kp = 5.1 nM; Bmax = 16.2 fmol/mg tissue). Bound [3H]NT can be displaced by nonradioactive NT and a series of its fragments and analogues with relative potencies that correlate closely (r = 0.89; p less than 0.01) to their potencies in the rat stomach strip bioassay. These results suggest that NT receptors are similar in both systems. [3H]NT binding sites were visualized by using tritium-sensitive LKB film analysed by computerized densitometry. [3H]NT receptors are highly concentrated in the external layer of the olfactory bulb, in the rhinal sulcus, in certain nuclei of the amygdala, in the substantia nigra, zona compacta and in the ventral tegmental area. The high density of [3H]NT receptors in the last two areas suggest an interaction between NT and brain dopaminergic systems such as the nigrostriatal and the mesolimbic pathways.  相似文献   

9.
[3H]H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 ([3H]CTOP), a potent and highly selective mu opioid antagonist, was used to localize the mu receptors in rat brain by light microscopic autoradiography. Radioligand binding studies with [3H]CTOP using slide-mounted tissue sections of rat brain produced a Kd value of 1.1 nM with a Bmax value of 79.1 fmol/mg protein. Mu opioid agonists and antagonists inhibited [3H]CTOP binding with high affinity (IC50 values of 0.2-2.4 nM), while the delta agonist DPDPE, delta antagonist ICI 174,864, and kappa agonist U 69, 593 were very weak inhibitors of [3H]CTOP binding (IC50 values of 234-3631 nM). Light microscopic autoradiography of [3H]CTOP binding sites revealed regions of high density (nucleus of the solitary tract, clusters in the caudate-putamen, interpeduncular nucleus, superior and inferior colliculus, subiculum, substantia nigra zona reticulata, medial geniculate, locus coeruleus and dorsal motor nucleus of the vagus) and regions of moderate labeling (areas outside of clusters in the caudate-putamen, cingulate cortex, claustrum and nucleus accumbens). The cerebral cortex (parietal) showed a low density of [3H]CTOP binding.  相似文献   

10.
L-657,743 (MK-912), a highly potent and selective alpha 2-adrenoceptor antagonist was tritiated to a high specific activity and its binding characteristics to brain tissue were determined. The specific binding of [3H]L-657,743 to rat cerebrocortex was saturable, reversible, and dependent on tissue concentration. In saturation studies, [3H]L-657,743 binding was resolved into two high affinity components exhibiting Kd values of 86 pM and 830 pM with densities of 82 fmol/mg protein and 660 fmol/mg protein, respectively. Based on the binding potencies of a variety of compounds with differing receptor selectivities, the sites labeled by [3H]L-657,743 were characteristic of alpha 2-adrenoceptors. In contrast to alpha 2-antagonists, alpha 2-agonists displayed shallow competition curves. In the presence of 100 microM GTP, Gpp(NH)p or 150 mM NaCl, the competition curve for epinephrine was shifted to the right, whereas that for yohimbine was unaffected. In studies utilizing human cerebrocortical tissue, [3H]L-657,743 also bound with high affinity to sites characteristic of alpha 2-adrenoceptors.  相似文献   

11.
Abstract— [125I]Diiodo α-bungarotoxin ([125I]2BuTx) and [3H]quinuclidinylbenzilate ([3H]QNB) binding sites were measured in post-nuclear membrane fractions prepared from whole brains or brain regions of several species. Species studied included Drosophila melanogaster (fruit fly), Torpedo californiea (electric ray), Carassius auratus (goldfish), Ram pipiens (grass frog), Kana cutesheiana (bullfrog), Rattus norvegicus (rat, Sprague-Dawley), Mus muscalus (mouse, Swiss random, C58/J, LG/J), Oryctolagus cuniculus (rabbit, New Zealand Whitc), and Bos (cow). Acetyl-CoA: choline O -acetyltransferase (EC 2.3.1.6) levels were also determined in the post nuclear supernatants and correlated with the number of binding sites.
All species and regions except Drosophila had 16–150 fold more [3H]QNB binding sites than [125I]2BuTx binding sites. Brain regions with the highest levels of [125I]2BuTx binding were Drosophila heads (300 fmol/mg), goldfish optic tectum (80fmol/mg), and rat and mouse hippocampus (3040 fmol/mg). The highest levels of [3H]QNB binding were seen in rat and mouse caudate (1.3–1.6 pmol/mg). Lowest levels of [3H]QNB and [125I]2BuTx binding were seen in cerebellum. The utility of [125I]2BuTx and [3H]QNB binding as quantitative measures of nicotinic and muscarinic acetylcholine receptors in CNS is discussed.  相似文献   

12.
A new radiolabeled adenosine receptor agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadeno sin e (CGS 21680), apparently specific for high-affinity binding sites of the A2 subtype in rat brain, was used to identify and pharmacologically characterize adenosine receptors in human brain. The binding of [3H]CGS 21680, as determined by standard radioligand binding technique in the presence of exogenously added adenosine deaminase, reached equilibrium after 40 min at 25 degrees C. In saturation studies, a single class of high-affinity binding sites with values for KD of 22 +/- 0.5 nM and Bmax of 444 +/- 63 fmol/mg of protein were observed. Similar binding characteristics were observed regardless of whether rapid filtration or centrifugation was used to separate bound versus free ligand. Of the 14 brain regions examined, [3H]CGS 21680 binding was highest in putamen, followed by globus pallidus and caudate nucleus. The level of [3H]CGS 21680 binding in these areas of basal ganglia was identical to 5'-N-[3H]ethylcarboxamidoadenosine ([3H]NECA) binding in the presence of 50 nM N6-cyclopentyladenosine (CPA). The rank order of agonist potencies as determined by a series of competition experiments was NECA greater than or equal to CGS 21680 greater than 2-chloroadenosine greater than N6-(R)-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6-(S)-phenylisopropyladenosine. This potency order was the same for the binding of [3H]CGS 21680 to rat, and of [3H]NECA in the presence of 50 nM CPA to rat and human, brain membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The promethazine-sensitive [3H]mepyramine binding was used to determine the presence of histamine H1 receptors in membranes from bovine retina. Specific mepyramine binding to retinal membranes was reversible, saturable and of high affinity. The apparent dissociation constant (KD = 2.2 +/- 0.4 nM) and the density of binding sites (Bmax = 60.9 +/- 5.1 fmol/mg protein), obtained in equilibrium studies, were similar to those found in bovine brain cortex. Binding was stereospecific and the inhibitory potencies of H1 and H2 antagonists indicated that [3H] mepyramine binding sites in the retina have characteristics of H1 receptors.  相似文献   

14.
In the present study, we characterized the distribution and the pharmacological properties of the different components of the GABAA receptor complex in the brain of the eel (Anguilla anguilla). Benzodiazepine recognition sites labeled "in vitro" with [3H]flunitrazepam ([3H]FNT) were present in highest concentration in the optic lobe and in lowest concentration in the medulla oblongata and spinal cord. A similar distribution was observed in the density of gamma-[3H]aminobutyric acid ([3H]GABA) binding sites. GABA increased the binding of [3H]FNT in a concentration-dependent manner, with a maximal enhancement of 45% above the control value, and, vice versa, diazepam stimulated the binding of [3H]GABA to eel brain membrane preparations. The density of benzodiazepine and GABA recognition sites and their reciprocal regulation were similar to those observed in the rat brain. In contrast, the binding of the specific ligand for the Cl- ionophore, t-[35S]butylbicyclophosphorothionate ([35S]TBPS), to eel brain membranes was lower than that found in the rat brain. In addition, [35S]TBPS binding in eel brain was less sensitive to the inhibitory effects of GABA and muscimol and much more sensitive to the stimulatory effect of bicuculline, when compared with [35S]TBPS binding in the rat brain. Moreover, the uptake of 36Cl- into eel brain membrane vesicles was only marginally stimulated by concentrations of GABA or muscimol that significantly enhanced the 36Cl- uptake into rat brain membrane vesicles. Finally, intravenous administration of the beta-carboline inverse agonist 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methyl ester (20 mg/kg) and of the chloride channel blocker pentylenetetrazole (80 mg/kg) produced convulsions in eels that were antagonized by diazepam at doses five to 20 times higher than those required to produce similar effects in rats. The results may indicate a different functional activity of the GABA-coupled chloride ionophore in the fish brain as compared with the mammalian brain.  相似文献   

15.
C A Nelson  K B Seamon 《Life sciences》1988,42(14):1375-1383
The binding of [3H]forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating [3H]forskolin bound to protein from free [3H]forskolin by rapid filtration. The Kd for [3H]forskolin binding to solubilized proteins was 14 nM which was similar to that for [3H]forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for [3H]forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. [3H]forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmol/mg protein which increased to 94 fmol/mg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on [3H]forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmol/mg/min which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmol/mg/min which was not stimulated by GppNHp or forskolin. Thus, the number of high affinity binding sites for [3H]forskolin in solubilized preparations correlated with the activation of adenylate cyclase by GppNHp via the guanine nucleotide binding protein (GS).  相似文献   

16.
[3H]Neurokinin B ([3H]NKB) of high specific activity (75 Ci/mmol) was synthesized for study of its binding to crude synaptosomes from the rat cerebral cortex. The specific binding of [3H]NKB (75% of total binding) was temperature dependent, saturable, and reversible. Scatchard analyses and Hill plots showed the existence of a single population of noninteracting binding sites (KD = 4.3 nM; Bmax = 123 fmol/mg of protein). Competition studies indicated the following rank order of potencies among tachykinins: NKB greater than eledoisin (E) greater than kassinin greater than physalaemin greater than neurokinin A (NKA) greater than substance P (SP), a result suggesting that NKB might be the endogenous ligand for [3H]NKB binding sites. It is of interest that 127I-Bolton Hunter (BH) NKA (127I-BHNKA) was much more potent than NKA in inhibiting the specific binding of [3H]NKB, which raises certain questions concerning the use of 125I-BHNKA as a ligand for NKA binding sites in the brain. These results, as well as those obtained with different SP analogues, show a close similarity to those obtained previously with 125I-BHE binding to cortical synaptosomes. This suggested that the two ligands labeled identical binding sites. In addition, using either [3H]NKB or 125I-BHE as ligands, similar displacement curves were obtained with increasing concentrations of NKB and 127I-BHE. The similarity of the [3H]NKB and 125I-BHE binding sites was further confirmed by comparison of their localization on rat brain sections by autoradiography. The distribution of binding sites for [3H]NKB and 125I-BHE was identical throughout the brain, and the highest density of binding sites for the two ligands was found in layers IV and V of the cerebral cortex, the paraventricular nucleus of the hypothalamus (magnocellular part), and the ventral tegmental area.  相似文献   

17.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

18.
T V Dam  R Quirion 《Peptides》1986,7(5):855-864
[3H]Substance P ([3H]SP) was used to characterize substance P (SP) receptor binding sites in guinea pig brain using membrane preparations and in vitro receptor autoradiography. Curvilinear Scatchard analysis shows that [3H]SP binds to a high affinity site (Kd = 0.5 nM) with a Bmax of 16.4 fmol/mg protein and a low affinity site (Kd = 29.6 nM) with a Bmax of 189.1 fmol/mg protein. Monovalent cations generally inhibit [3H]SP binding while divalent cations substantially increased it. The ligand selectivity pattern is generally similar to the one observed in rat brain membrane preparation with SP being more potent than SP fragments and other tachykinins. However, the potency of various nucleotides is different with GMP-PNP greater than GDP greater than GTP. The autoradiographic distribution of [3H]SP binding sites shows that high amounts of sites are present in the hippocampus, striatum, olfactory bulb, central nucleus of the amygdala, certain thalamic nuclei and superior colliculus. The cortex is moderately enriched in [3H]SP binding sites while the substantia nigra contains only very low amounts of sites. Thus, the autoradiographic distribution of SP binding sites is fairly similar in both rat and guinea pig brain.  相似文献   

19.
[Arg8]-Vasopressin (AVP) has been shown to exert characteristic central physiological actions in the ventral septal area of the rat brain. This study reports the characterization of receptors for AVP in synaptic plasma membranes prepared from the ventral septal area, the lateral septum, and the hippocampus. Binding of [3H]AVP was temperature and time dependent, linearly related to protein concentration, saturable, and specific. Scatchard plot analysis suggested the presence of a population of binding sites in the three brain areas with dissociation constants and maximal binding capacities, respectively, of 1.06 +/- 0.39 nM and 24.0 +/- 7.01 fmol/mg of protein (mean +/- SEM; n = 3 for the ventral septal area, 0.92 +/- 0.13 nM and 47.0 +/- 4.96 fmol/mg of protein (n = 3) for the lateral septum, and 0.91 +/- 0.14 nM and 25 +/- 5.02 fmol/mg of protein (n = 3) for the hippocampus. In all three brain regions, the rank order of potencies of several vasopressin analogs, unrelated peptides, and other compounds for competitive displacement of ligand indicated a receptor with properties resembling those of the V1-like receptor for AVP. These data document the presence of a high-affinity, V1-like vasopressin receptor in the rat ventral septal area for which the pharmacological properties are similar to those previously reported in physiological studies.  相似文献   

20.
Binding sites for atrial natriuretic peptide, ANP-(99-126) were studied in lymphoid organs of the rat with quantitative autoradiography. Tissue sections were incubated in the presence of 0.13 nM 125I-ANP-(99-126) followed by autoradiography using [3H]-Ultrofilm, and the results were analyzed by computerized densitometry and comparison to 125I-standards. Specific ANP binding sites were localized in the medulla and the cortex of the rat thymus and in the white pulp of the rat spleen, with apparent binding sites concentrations of 93, 65, and 126 fmol/mg protein, respectively. The presence of ANP binding sites in areas related to the maturation and function of lymphocytes, and to the production of thymic hormones, suggests the possibility of a role of circulating ANP in the modulation of the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号