首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida peltata NRRL Y-6888 to ferment xylose to xylitol was evaluated under different fermentation conditions such as pH, temperature, aeration, substrate concentration and in the presence of glucose, arabinose, ethanol, methanol and organic acids. Maximum xylitol yield of 0.56 g g−1 xylose was obtained when the yeast was cultivated at pH 6.0, 28°C and 200 rpm on 50 g L−1 xylose. The yeast produced ethanol (0.41 g g−1 in 40 h) from glucose (50 g L−1) and arabitol (0.55 g g−1 in 87 h) from arabinose (50 g L−1). It preferentially utilized glucose > xylose > arabinose from mixed substrates. Glucose (10 g L−1), ethanol (7.5 g L−1) and acetate (5 g L−1) inhibited xylitol production by 61, 84 and 68%, respectively. Arabinose (10 g L−1) had no inhibitory effect on xylitol production. Received 24 December 1998/ Accepted in revised form 18 March 1999  相似文献   

2.
Exopolysaccharide (EPS) production was compared among three strains of lactobacilli. Lactobacillus rhamnosus strain 9595M can be classified among the highest EPS-producing strains of lactic acid bacteria reported to date with a maximum EPS production of 1275 mg L−1. Under controlled pH, no significant differences in the quantity of EPS produced could be detected between carbon source (glucose or lactose) or fermentation temperature (32 or 37°C). In milk, strains ATCC 9595M and R produced more than 280 mg L−1 EPS whereas strain Type V produced less than 80 mg L−1 EPS. Journal of Industrial Microbiology & Biotechnology (2000) 24, 251–255. Received 10 September 1999/ Accepted in revised form 22 December 1999  相似文献   

3.
The wild strain and the astaxanthin-overproducing mutant strain 25–2 of Phaffia rhodozyma were analyzed in order to assess their ability to grow and synthesize astaxanthin in a minimal medium composed of g L−1: KH2PO4 2.0; MgSO4 0.5; CaCl2 0.1; urea 1.0 and supplemented with date juice of Yucca fillifera as a carbon source (yuca medium). The highest astaxanthin production (6170 μg L−1) was obtained at 22.5 g L−1 of reducing sugars. The addition of yeast extract to the yuca medium at concentrations of 0.5–3.0 g L−1 inhibited astaxanthin synthesis. The yuca medium supported a higher production of astaxanthin, 2.5-fold more than that observed in the YM medium. Journal of Industrial Microbiology & Biotechnology (2000) 24, 187–190. Received 14 July 1999/ Accepted in revised form 02 December 1999  相似文献   

4.
A repeated batch fermentation system was used to produce ethanol using an osmotolerant Saccharomyces cerevisiae (VS3) immobilized in calcium alginate beads. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Fermentation was carried for six cycles with 125, 250 or 500 beads using 150, 200 or 250 g glucose L−1 at 30°C. The maximum amount of ethanol produced by immobilized VS3 using 150 g L−1 glucose was only 44 g L−1 after 48 h, while the amount of ethanol produced by free cells in the first cycle was 72 g L−1. However in subsequent fed batch cultures more ethanol was produced by immobilized cells compared to free cells. The amount of ethanol produced by free cells decreased from 72 g L−1 to 25 g L−1 after the fourth cycle, while that of immobilized cells increased from 44 to 72 g L−1. The maximum amount of ethanol produced by immobilized VS3 cells using 150, 200 and 250 g glucose L−1 was 72.5, 93 and 87 g ethanol L−1 at 30°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 222–226. Received 16 September 1999/ Accepted in revised form 22 December 1999  相似文献   

5.
Aureobasidium pullulans P56 was investigated using an adaptation technique and a mixed culture system. The adaptation of A. pullulans and the mixed cultures of A. pullulans and/or Lactobacillus brevisX20, Debaryomyces hansenii 194 and Aspergillus niger did not increase the production of polysaccharide. Enzymic hydrolysis of lactose in deproteinized whey gave a higher polysaccharide concentration and polysaccharide yield than acidic hydrolysed lactose. Maximum polysaccharide concentration (11.0 ± 0.5 g L−1), biomass dry weight (10.5 ± 0.4 g L−1), polysaccharide yield (47.2 ± 1.8%) and sugar utilization (93.2 ± 2.8%) were achieved using enzyme-hydrolysed whey (pH 6.5) containing 25 g L−1 lactose and supplemented with K2HPO4 0.5%, L-glutamic acid 1%, olive oil 2.5%, and Tween 80 0.5%. In this case the pullulan content of the crude polysaccharide was 40%. Received 16 December 1997/ Accepted in revised form 12 March 1999  相似文献   

6.
Delta-endotoxin production by a strain of Bacillus thuringiensis subsp kurstakion complex media based on crude gruel and fish meal was investigated. High proteolytic activities were concomitantly produced with the bioinsecticide. In such complex media, the repressive regulation due to readily consumed carbon sources was partially overcome. In order to improve substrate assimilation, 0.5 g L−1 sodium chloride and 0.1% Tween-80 were supplemented to the production medium, increasing delta-endotoxin yields when using gruel concentrations below 59 g L−1. At and beyond 75 g L−1 gruel, delta-endotoxin yields were not affected in the presence of 0.5 g L−1 NaCl and 0.1% Tween-80, but proteolytic activity yields were remarkably reduced. Thus, the use of sodium chloride and Tween-80 allowed reduction of the initial gruel concentration to 42 g L−1 for the production of 3350 mg L−1 delta-endotoxin, while it was only 3800 mg L−1 with 92 g L−1 gruel. Moreover, similar to 0.5 g L−1 NaCl and 0.1% Tween-80, the use of 10 g L−1 sodium acetate significantly improved delta-endotoxin production and also reduced the proteolytic activity to 250 U ml−1. Received 05 November 1998/ Accepted in revised form 19 August 1999  相似文献   

7.
We sought an optimal pH profile to maximize curdlan production in a batch fermentation of Agrobacterium species. The optimal pH profile was calculated using a gradient iteration algorithm based on the minimum principle of Pontryagin. The model equations describing cell growth and curdlan production were developed as functions of pH, sucrose concentration, and ammonium concentration, since the specific rates of cell growth and curdlan production were highly influenced by those parameters. The pH profile provided the strategy to shift the culture pH from the optimal growth condition (pH 7.0) to the optimal production one (pH 5.5) at the time of ammonium exhaustion. By applying the optimal pH profile in the batch process, we obtained significant improvement in curdlan production (64 g L−1) compared to that of constant pH operation (36 g L−1). Received 24 November 1998/ Accepted in revised form 17 June 1999  相似文献   

8.
Xylitol, a functional sweetener, was produced from xylose using Candida tropicalisATCC 13803. A two-substrate fermentation was designed in order to increase xylitol yield and volumetric productivity. Glucose was used initially for cell growth followed by conversion of xylose to xylitol without cell growth and by-product formation after complete depletion of glucose. High glucose concentrations increased volumetric productivity by reducing conversion time due to high cell mass, but also led to production of ethanol, which, in turn, inhibited cell growth and xylitol production. Computer simulation was undertaken to optimize an initial glucose concentration using kinetic equations describing rates of cell growth and xylose bioconversion as a function of ethanol concentration. Kinetic constants involved in the equations were estimated from the experimental results. Glucose at 32 g L−1 was estimated to be an optimum initial glucose concentration with a final xylose concentration of 86 g L−1 and a volumetric productivity of 5.15 g-xylitol L−1 h−1. The two-substrate fermentation was performed under optimum conditions to verify the computer simulation results. The experimental results were in good agreement with the predicted values of simulation with a xylitol yield of 0.81 g-xylitol g-xylose−1 and a volumetric productivity of 5.06 g-xylitol L−1 h−1. Received 16 June 1998/ Accepted in revised form 28 February 1999  相似文献   

9.
The growth behavior of Clostridium thermobutyricum JW171K and its production of butyric acid were investigated under continuous cultivation in a recently developed rotary fermentor. Using low dilution rates (up to 40 times the shortest doubling time), the continuous culture conditions caused metabolic shifts from butyrate formation to the production of acetate. Using an 18-h volumetric retention time, no true steady state in butyrate formation was achieved after 22 days, although the optical density was stable. Acetate and butyrate were formed in an oscillatory mode with an alternating predominance between these two products, indicating an oscillation between the less exergonic acetate-forming but higher ATP (4ATP mol−1 glucose) forming mode, and the more exergonic butyrate and 3ATP mol−1 glucose forming mode. During the continuous culture drastic changes in cell morphology occurred and, at the lower dilution rates, long, granulose-containing, filamentous cells with rounded protuberances and swellings were observed. A maximal butyrate concentration of 18.4 g L−1 and a productivity of about 2.4 g L−1 per h (at 25–27 mM concentration in the broth) were obtained. Journal of Industrial Microbiology & Biotechnology (2000) 24, 7–13. Received 26 April 1999/ Accepted in revised form 16 August 1999  相似文献   

10.
The maximum ethanol concentration produced from glucose in defined media at 45°C by the thermotolerant yeast Kluyveromyces marxianus IMB3 was 44 g L−1. Acclimatisation of the strain through continuous culture at ethanol concentrations up to 80 g L−1, shifted the maximum ethanol concentration at which growth was observed from 40 g L−1 to 70 g L−1. Four isolates were selected from the continuous culture, only one of which produced a significant increase in final ethanol concentration (50 ± 0.4 g L−1), however in subsequent fermentations, following storage on nutrient agar plates, the maximum ethanol concentration was comparable with the original isolate. The maximum specific ethanol production rates (approximately 1.5 g (gh)−1) were also comparable with the original strain except for one isolate (0.7 g (gh)−1). The specific ethanol productivity decreased with ethanol concentration; this decrease correlated linearly (rval 0.92) with cell viability. Due to the transience of induced ethanol tolerance in the strain it was concluded that this was not a valid method for improving final ethanol concentrations or production rates. Received 18 July 1997/ Accepted in revised form 19 February 1998  相似文献   

11.
Production of the bacteriocin enterocin 1146 (E1146) by Enterococcus faecium DPC1146 was studied in batch and continuous fermentation. Growth was strongly inhibited by lactic acid. In batch fermentations maximum E1146 activity (2.8 MBU L−1) was obtained in 9 h with 20 g L−1 glucose. Increase in initial glucose concentration did not lead to a proportional increase in E1146 activity. A simple linear model was found to be adequate to explain the relationship between specific bacteriocin production rate and specific growth rate in batch fermentations with initial glucose concentration higher than 20 g L−1. Maximum bacteriocin activity (2.9–3.2 MBU L−1) was obtained in continuous fermentations at dilution rates between 0.12 and 0.17 h−1 and specific bacteriocin production rate increased linearly with dilution rate. Received 31 July 1996/ Accepted in revised form 01 November 1996  相似文献   

12.
A pilot-scale production method of recombinant human angiostatin, a 38-kD fragment of plasminogen which has been reported to have antiangiogenic activity, has been successfully established by expressing the protein in the methylotrophic yeast Pichia pastoris. The secreted protein inhibited cultured endothelial cell proliferation in vitro and Lewis lung carcinoma growth in mice. The fermentation process was carried out using an on-line methanol controller, administering methanol to the growing culture and keeping its concentration under 2 g L−1. The fermentation lasted 90 h, of which 70 h were growth on methanol. During growth on methanol the culture volume increased 64%, from 7 L to 11.5 L, producing 200 mg angiostatin and 5 kg of biomass. Journal of Industrial Microbiology & Biotechnology (2000) 24, 31–35. Received 12 May 1999/ Accepted in revised form 06 September 1999  相似文献   

13.
Pseudomonas sp EL-2 was cultivated to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from a structurally unrelated carbon source, glucose, by a fed-batch culture technique. Variation of the carbon to nitrogen (C/N) ratio of the medium produced optimal P(3HB-co-3HV) production at a C/N ratio of 95. Production of P(3HB-co-3HV) was favored by a dissolved oxygen tension of 40%. A maximum biomass concentration of 38 g L−1 containing 53% P(3HB-co-3HV) was achieved after 45 h of cultivation. This corresponds to a volumetric productivity of 0.84 g L−1 h−1. The copolymer contained 7.5 mol% 3-hydroxyvalerate. Journal of Industrial Microbiology & Biotechnology (2000) 24, 36–40. Received 28 January 1999/ Accepted in revised form 11 September 1999  相似文献   

14.
The aim of this work was to optimize the fermentation parameters in the shake-flask culture of marine bacterium Wangia sp. C52 to increase cold-adapted amylase production using two statistical experimental methods including Plackett–Burman design, which was applied to find the key ingredients for the best medium composition, and response surface methodology, which was used to determine the optimal concentrations of these components. The results showed starch, tryptone, and initial pH had significant effects on the cold-adapted amylase production. A central composite design was then employed to further optimize these three factors. The experimental results indicated that the optimized composition of medium was 6.38 g L−1 starch, 33.84 g L−1 tryptone, 3.00 g L−1 yeast extract, 30 g L−1 NaCl, 0.60 g L−1 MgSO4 and 0.56 g L−1 CaCl2. The optimized cultivation conditions for amylase production were pH 7.18, a temperature of 20°C, and a shaking speed of 180 rpm. Under the proposed optimized conditions, the amylase experimental yield (676.63 U mL−1) closely matched the yield (685.60 U mL−1) predicted by the statistical model. The optimization of the medium contributed to tenfold higher amylase production than that of the control in shake-flask experiments.  相似文献   

15.
The fermentation characteristics of the novel, thermotolerant, isolate Kluyveromyces marxianus var marxianus were determined to evaluate its aptitude for use in an ethanol production process. Sustainable growth was not observed under anaerobic conditions, even in the presence of unsaturated fatty acid and sterol. A maximum ethanol concentration of 40 g L−1 was produced at 45°C, with an initial specific ethanol production rate of 1.7 g g−1 h−1. This was observed at ethanol concentrations below 8 g L−1 and under oxygen-limited conditions. The low ethanol tolerance and low growth under oxygen-limited conditions required for ethanol production implied that a simple continuous process was not feasible with this yeast strain. Improved productivity was achieved through recycling biomass into the fermenter, indicating that utilising an effective cell retention method such as cell recycle or immobilisation, could lead to the development of a viable industrial process using this novel yeast strain. Received 14 February 1998/ Accepted in revised form 19 May 1998  相似文献   

16.
Creosote was evaluated as an inexpensive carbon source for growing inocula of a polycyclic aromatic hydrocarbon (PAH)-degrading bacterial community (community five). Creosote was a poor growth substrate when provided as sole carbon source in a basal salts solution (BSM). Alternatively, peptone, yeast extract or glucose in BSM supported high growth rates, but community five could not subsequently degrade pyrene. A combination of creosote and yeast extract in BSM (CYEM) supported growth and maintained the pyrene-degrading capacity of community five. Optimum pyrene-degrading activity occurred when the inocula were grown in creosote and yeast extract concentrations of 2 ml L−1 and 1 g L−1 respectively: concentrations outside these values resulted in either low biomass yields or loss of PAH-degrading activity. CYEM-grown community five inocula degraded 250 mg L−1 of pyrene in BSM at a rate comparable to cultures inoculated with community five grown in BSM-pyrene. However, the CYEM-grown community showed a 40% lower rate of PAH degradation in a synthetic PAH mixture compared with pyrene-grown cells and there was an increase in the lag period before the onset of PAH degradation. This appears to reflect a weaker induction of PAH catabolism by CYEM compared to BSM-pyrene. Journal of Industrial Microbiology & Biotechnology (2000) 24, 277–284. Received 24 August 1999/ Accepted in revised form 20 January 2000  相似文献   

17.
Sugar cane bagasse hemicellulosic fraction submitted to hydrolytic treatment with 100 mg of sulfuric acid per gram of dry mass, at 140°C for 20 min, was employed as a substrate for microbial protein production. Among the 22 species of microorganisms evaluated, Candida tropicalis IZ 1824 showed TRS consumption rate of 89.8%, net cell mass of 11.8 g L−1 and yield coefficient (Yx/s) of 0.50 g g−1. The hydrolyzate supplemented with rice bran (20.0 g L−1), P2O5 (2.0 g L−1) and urea (2.0 g L−1) provided a TRS consumption rate of 86.3% and a cell mass of 8.4 g L−1. At pH 4.0 cellular metabolism was inhibited, whereas at pH 6.0 the highest yield was obtained. The presence of furfural (2.0 g L−1) hydroxymethylfurfural (0.08 g L−1) and acetic acid (3.7 g L−1) in the hydrolyzate did not interfere with cultivation at pH 6.0. Received 25 October 1996/ Accepted in revised form 10 March 1997  相似文献   

18.
1,3-Propanediol inhibition during glycerol fermentation to 1,3-propanediol by Clostridium butyricum CNCM 1211 has been studied. The initial concentration of the 1,3-propanediol affected the growth of the bacterium more than the glycerol fermentation. μ max was inversely proportional to the initial concentration of 1,3-propanediol (0–65 g l−1). For glycerol at 20 g l−1, the growth and fermentation were completely stopped at an initial 1,3-propanediol concentration of 65 g l−1. However, for an initial 1,3-propanediol concentration of 50 g l−1 and glycerol at 70 g l−1, the final concentration (initial and produced) of 1,3-propanediol reached 83.7 g l−1(1.1 M), with complete consumption of the glycerol. Therefore, during the fermentation, the strain tolerated a 1,3-propanediol concentration higher than the initial inhibitory concentration (65 g l−1). The addition of 1,2-propanediol or 2,3-butanediol (50 g l−1) in the presence of glycerol (50–100 g l−1), showed that 2-diols reduced the μ max in a similar way to 1,3-propanediol. The measurement of the osmotic pressure of glycerol solutions, diols and diol/glycerol mixtures did not indicate any differences between these compounds. The hypothesis of diol inhibition was discussed. Taking into account the strain tolerance of highly concentrated 1,3-propanediol during fermentation, the fermentation processes for optimising production were considered. Received: 15 November 1999 / Revision received: 1 February 2000 / Accepted: 4 February 2000  相似文献   

19.
Environmental copper contamination is a serious human health problem. Copper reductase is produced by microorganisms to facilitate copper uptake by ATPases into the cells increasing copper biosorption. This study assessed the reduction of Cu(II) by cell-free extracts of a highly copper-resistant bacterium, Pseudomonas sp. strain NA, isolated from vineyard soil contaminated with copper. Both intact cells and cell-free extract of Pseudomonas sp. strain NA displayed substantial reduction of Cu(II). Intact cells reduced more then 80 mg L−1 of Cu(II) from medium amended with 200 mg L−1 of copper after 24 h of incubation. Cell-free extract of the isolate reduced more than 65% of the Cu(II) at initial copper concentration of 200 mg L−1 after 24 h. Soluble protein production was high at 72 h of incubation at 100 mg L−1 of copper, with more then 60 μg L−1 of total soluble protein in cell-free extract recorded. Cu(II) reduction by isolate NA was increased when copper concentration increased for both intact cells and cell-free extract. Results indicate that Pseudomonas sp. strain NA produces copper reductase enzyme as the key mechanism of copper biotransformation.  相似文献   

20.
The bioconversion of xylose to xylitol by Candida guilliermondii FTI 20037 cultivated in sugar cane bagasse hemicellulosic hydrolyzate was influenced by cell inoculum level, age of inoculum and hydrolyzate concentration. The maximum xylitol productivity (0.75 g L−1 h−1) occurred in tests carried out with hydrolyzate containing 54.5 g L−1 of xylose, using 3.0 g L−1 of a 24-h-old inoculum. Xylitol productivity and cell concentration decreased with hydrolyzate containing 74.2 g L−1 of xylose. Received 02 February 1996/ Accepted in revised form 15 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号