首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Use-dependent blocking of sodium current in the membrane of single rat cardiomyocytes by verapamil (in the concentration range of 5-50 mumol/l) has been observed. The data obtained suggest that verapamil binding with sodium channels which are in the open or inactivated state underlies suppression of sodium current.  相似文献   

2.
Calcium currents from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the "whole-cell" voltage clamp technique. An inward current characterized by large amplitude and slow inactivation decay was induced when the extracellular Ca2+ concentration was reduced by EGTA. This current was suppressed by extracellular Na+ removal, or by calcium antagonists, and increased by epinephrine and BAY K 8644. These findings suggest that this current is carried by sodium ions through Ca channels. Both Ca and Na currents through calcium channels were irreversibly blocked by omega-conotoxin. Complete blockade developed 10-15 minutes after the toxin introduction in the extracellular solution. Blockade of Na currents through calcium channels was characterized by a transient increase of current amplitude without any changes in its kinetics and voltage-dependent properties. Structural differences between calcium channels in rat and guinea-pig and frog cardiomyocytes were suggested.  相似文献   

3.
The objective of these studies is to identify and characterize Ca2+-transport systems that may be of potential importance in the action of Ca2+-mobilizing hormones in the adipocyte. Using the Ca2+-sensitive photoprotein, aequorin, [Ca2+]i was estimated to be 0.15 microM, assuming an intracellular [Mg2+] of 1 mM. Substitution of Na+ with choline+ caused a transient increase in [Ca2+]i which was inversely related to extracellular [Na+], consistent with operation of a mediated Na+-Ca2+ exchange system. The stoichiometry was 3Na+:Ca2+. Elevation of extracellular K+ caused an increase in [Ca2+]i that was blocked by the Ca2+ channel antagonist, diltiazem, by omitting extracellular Ca2+, or by substituting Sr2+ for Ca2+. These findings indicate the presence of an Na+-Ca2+ exchanger and voltage-sensitive Ca2+ channels in adipocytes.  相似文献   

4.
Using a patch-clamp technique in the whole-cell configuration, we studied the effect of an exogenous antioxidant, dithiothreitol (DTT), on transmembrane currents in isolated cells obtained from the rat spinal ganglia. We demonstrated that this antioxidant (DTT) is capable of modulating the proton-gated current. In most neurons, proton-gated currents increased in the presence of the antioxidant. Since proton-gated receptor-channel complexes of sensory neurons are involved in different processes of signalling and transmission of sensory information in the peripheral nervous system, we hypothesize that the influences mediated by alterations of the concentrations of antioxidants participate in the formation of the state of algesia under normal physiological conditions and of that of hyperalgesia in pathological states. In addition, oxidative stress, which causes a shift in the balance of concentrations of antioxidants, accompanies numerous abnormal pathophysiological states, in particular diabetes, ischemia, and inflammation. Since proton-gated channels are permeable for calcium ions, an antioxidant-induced increase in calcium signalling can be significantly important for a number of biochemical processes occurring in tissues. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 193–197, May–June, 2006.  相似文献   

5.
目的:通过探寻增加培养成年大鼠心肌细胞存活率以及防止再分化的方法,揭示培养成年大鼠心肌细胞存活的形态标志。方法:采用Langendorff系统灌流心脏,胶原酶消化法分离成年大鼠心肌细胞,分3组进行细胞培养:①基础培养液+凋亡抑制剂;②基础培养液+5%胎牛血清;③基础培养液+5%胎牛血清+凋亡抑制剂。结果:①培养前3天杆状心肌细胞比例逐渐降低,无血清培养组比血清培养组降低程度大。培养前3天凋亡率逐渐升高,无血清培养组比血清培养组凋亡率高,加入凋亡抑制剂对凋亡率无影响。②有血清培养2~3天的成年大鼠心肌细胞闰盘部位伸出伪足,促使细胞贴壁生长;当培养至第6天时,细胞侧面也伸展出贴壁的伪足,细胞丧失杆状形态,横纹消失。而无血清培养的细胞无伪足生成,随着培养时间增加,细胞末端变圆钝,横纹变模糊。凋亡抑制剂对伪足形成率无影响。③培养存活的成年大鼠心肌细胞骨架重排,发生再分化。④血清培养组细胞胞内核间距离随着培养时间的增加而减小,无血清培养组则保持不变。结论:成年大鼠心肌细胞培养至第2~3天时,闰盘部位形成伪足是细胞存活的形态标志,加入血清是伪足形成的必要条件。  相似文献   

6.
M Chua  W J Betz 《Biophysical journal》1991,59(6):1251-1260
The channels present on the surface membrane of isolated rat flexor digitorum brevis muscle fibers were surveyed using the patch clamp technique. 85 out of 139 fibers had a novel channel which excluded the anions chloride, sulfate, and isethionate with a permeability ratio of chloride to sodium of less than 0.05. The selectivity sequence for cations was Na+ = K+ = Cs+ greater than Ca++ = Mg++ greater than N-Methyl-D-Glucamine. The channel remained closed for long periods, and had a large conductance of approximately 320 pS with several subconductance states at approximately 34 pS levels. Channel activity was not voltage dependent and the reversal potential for cations in muscle fibers of approximately 0 mV results in the channel's behaving as a physiological leakage conductance. Voltage activated potassium channels were present in 65 of the cell attached patches and had conductances of mostly 6, 12, and 25 pS. The voltage sensitivity of the potassium channels was consistent with that of the delayed rectifier current. Only three patches contained chloride channels. The scarcity of chloride channels despite the known high chloride conductance of skeletal muscle suggests that most of the chloride channels must be located in the transverse tubular system.  相似文献   

7.
8.
Expression of alpha-smooth muscle (sm) actin in regenerating adult cardiomyocytes in culture was investigated. No alpha-sm-actin could be detected in adult ventricular tissue or in newly dissociated rod-shaped cells, whereas a fraction of the polymorphic flattened out adult cardiac cells in culture did express the protein. Immunofluorescence studies revealed a characteristic staining pattern, suggesting the preferential presence of alpha-sm-actin in stress fiber-like structures, while newly formed myofibrils contained only little alpha-sm-actin isoprotein. Cell-cell contacts were resumed, but formation of new gap junctions, as revealed by microinjecting Lucifer yellow, was not dependent on alpha-sm-actin expression. The behavior corresponds to fetal cardiomyocytes either in tissue or as single cells in culture where expression of alpha-sm-actin can be observed. Such immunofluorescence staining patterns with corresponding immunoblot data can be expected when a return to a less differentiated, more fetal state of the adult cardiomyocyte in culture is assumed. The possible role of the alpha-sm-actin and alpha-sarcomeric actin isoforms during reformation of myofibrillar sarcomeres is discussed.  相似文献   

9.
CGRP has potent cardiovascular effects but its role in heart failure is unclear. Effects of CGRP on calcium concentrations in fresh adult rat cardiomyocytes, cultured adult cardiomyocytes and neonatal cardiomyocytes were determined by real time fluorescence spectrophotometry. Treatment of cultured adult cardiomyocytes with CGRP resulted in a rapid cessation of beating and a reduction in intracellular calcium. Similar results were obtained in cultured neonatal myocytes. However, rod-shaped adult cardiomyocytes revealed a number of responses; (a) non-beating cells began to beat with increased intracellular calcium; (b) spontaneously beating cells exhibited increased intracellular calcium content and a faster beating rate or (c), myocytes increased their beating rate and became arrhythmic, suggesting that CGRP action on cultured dedifferentiated adult and neonatal myocytes depletes intracellular calcium, whereas in the rod-shaped mature myocytes calcium is retained, pointing to a different mode of action for CGRP on developing and dedifferentiating cardiomyocytes, compared to fully developed cardiomyocytes.  相似文献   

10.
In this study we examined the effect of polyunsaturated fatty acids (PUFAs), in particular of docosahexaenoic acid (DHA), on calcium homeostasis in isolated adult rat cardiomyocytes exposed to KCl, ET-1 and anoxia. Free [Ca(2+)](i) in rat cardiomyocytes was 135.7 +/- 0.5 nM. Exposure to 50 mM KCl or 100 nM ET-1 resulted in a rise in free [Ca(2+)](i) in freshly isolated cells (465.4 +/- 15.6 nM and 311.3 +/- 12.6 nM, respectively) and in cultured cells (450.8 +/- 14.8 nM and 323.5 +/- 14.8 nM respectively). An acute treatment (20 minutes) with 10 microM DHA significantly reduced the KCl- and ET-1-induced [Ca(2+)](i) increase (300.9 +/- 18.1 nM and 232.08 +/- 11.8 nM, respectively). This reduction was greater after chronic treatment with DHA (72 h; 257.7 +/- 13.08 nM and 192.18 +/- 9.8 nM, respectively). Rat cardiomyocytes exposed to a 20 minute superfusion with anoxic solution, obtained by replacing O(2) with N(2) in gas mixture, showed a massive increase in cytosolic calcium (1200.2 +/- 50.2 nM). Longer exposure to anoxia induced hypercontraction and later death of rat cardiomyocytes. Preincubation with DHA reduced the anoxic effect on [Ca(2+)](i) (498.4 +/- 7.3 nM in acute and 200.2 +/- 12.2 nM in chronic treatment). In anoxic conditions 50 mM KCl and 100 nM ET-1 produced extreme and unmeasurable increases of [Ca(2+)](i.) Preincubation for 20 minutes with DHA reduced this phenomenon (856.1 +/- 20.3 nM and 782.3 +/- 7.6 nM, respectively). This reduction is more evident after a chronic treatment with DHA (257.7 +/- 10.6 nM and 232.2 +/- 12.5 nM, respectively). We conclude that in rat cardiomyocytes KCl, ET-1 and anoxia interfered with intracellular calcium concentrations by either modifying calcium levels or impairing calcium homeostasis. Acute, and especially chronic, DHA administration markedly reduced the damage induced by calcium overload in those cells.  相似文献   

11.
Ionic currents through the frog Ranvier node membrane were measured by the voltage clamp method on the membrane of a single myelinated frog's nerve fiber under conditions when Na+ in the external solution was replaced by nonpenetrating cations. When pH fell below 4.0, small (under 0.1 nA) inward currents were found and on the basis of various features (kinetics, region of activation, and blocking by the local anesthetic benzocaine — 1.0 mM) were identified as currents through sodium channels. The results of control experiments with variation of the concentrations of cations in the external solution led to the conclusion that the H+ (or H3O+) ion is the main carrier of the measured inward current. According to the results of measurement of the reversal potential of these currents, the relative permeability of sodium channels for hydrogen ions (PH/PNa) averages 205 ± 14. The results are discussed in terms of a model of the water pore with saturation. It is concluded that the energy barriers for H+ in the sodium channel are low. It was also shown that the velocity of passage of protons through the channel is limited by binding with an acid group.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 499–507, September–October, 1982.  相似文献   

12.
Cytosolic free calcium [( Ca2+]in) was measured using fura-2 in isolated cultured ventricular myocytes of neonatal rat. Exposure of the cardiomyocyte to a solution in which all Na+ have been replaced by impermeable cations results in a 400-600 nmol/l increase of [Ca2+]in. This increase is followed by a slow decrease to the initial level. A decrease of the extracellular calcium concentration from 2.5 to 0.5 mmol./l or increase to 10 mmol/l produced, respectively, decrease and increase of the amplitude of [Ca2+]in rise in response to low-Na+ superfusion. Exposure of cardiomyocytes to low-Na+ solutions also led to a 2-3 fold increase of caffeine++-dependent Ca2+ release from intracellular stores. Changes in [Ca2+]in can be attributed to the operation of a sodium-calcium exchanger in heart cells.  相似文献   

13.
Dual wavelength microfluorometry was used to measure the cytoplasmic free calcium concentration [( Ca2+]in) in single cultured cells from ventricular myocytes of neonatal rats loaded with the indicator fura-2. At 2.5 nmol/l extracellular Ca2+ in the resting cells [Ca2+]in was between 80 and 110 nmol/l. Sometimes, spontaneous low-frequency (approximately 0.1 Hz) [Ca2+]in oscillations were observed. High-potassium depolarization led to a Ca2+-antagonists-sensitive rise of [Ca2+]in. Both caffeine++ (5-10 mmol/l) and thymol (lmmol/l) initialized transient increase of [Ca2+]in. Mechanisms of [Ca2+]in homeostasis in heart muscle cells were discussed.  相似文献   

14.
15.
Slow currents through single sodium channels of the adult rat heart   总被引:12,自引:6,他引:12       下载免费PDF全文
The currents through single Na+ channels from the sarcolemma of ventricular cells dissociated from adult rat hearts were studied using the patch-clamp technique. All patches had several Na+ channels; most had 5-10, while some had up to 50 channels. At 10 degrees C, the conductance of the channel was 9.8 pS. The mean current for sets of many identical pulses inactivated exponentially with a time constant of 1.7 +/- 0.6 ms at -40 mV. Careful examination of the mean currents revealed a small, slow component of inactivation at pulse potentials ranging from -60 to -30 mV. The time constant of the slow component was between 8 and 14 ms. The channels that caused the slow component had the same conductance and reversal potential as the fast Na+ currents and were blocked by tetrodotoxin. The slow currents appear to have been caused by repeated openings of one or more channels. The holding potential influenced the frequency with which such channel reopening occurred. The slow component was prominent during pulses from a holding potential of -100 mV, while it was very small during pulses from -140 mV. Ultraslow currents through the Na+ channel were observed occasionally in patches that had large numbers of channels. They consisted of bursts of 10 or more sequential openings of a single channel and lasted for up to 150 ms. We conclude that the single channel data cannot be explained by standard models, even those that have two inactivated states or two open states of the channel. Our results suggest that Na+ channels can function in several different "modes," each with a different inactivation rate.  相似文献   

16.
17.
Antitubulin, phalloidin, and antimyosin were used to study the distribution of microtubules, microfilaments, and myofibrils in cultured adult cardiomyocytes. These cells undergo a stereotypic sequence of morphological change in which myotypic features are lost and then reconstructed during a period of polymorphic growth. Microtubules, though rearranged during these events in culture, are always present in an organized network. Myosin and actin structures, on the other hand, initially degenerate. This initial degeneration is reversed when a cell attaches to the culture substratum. Upon attachment, new microtubules are laid down as a cortical network adjacent to the sarcolemma and, subsequently, as a network in the basal part of the cell. Actin and then myosin filament bundles appear next, in a pattern corresponding to the pattern of the microtubules. Finally, striated myofibrils are formed, first in the central part of the cell, and subsequently in the outgrowing processes of the cell. A mechanism is suggested by which the eventual polymorphic shape of a cell is related to the shape of its initial area of contact with the culture substratum. Finally, a model of myofibrillogenesis is proposed in which microtubules participate in the insertion of myosin among previously formed actin filament bundles to produce myofibrils.  相似文献   

18.
电压门控性钠离子通道与伤害性感受   总被引:6,自引:0,他引:6  
伤害性感受器激活引起疼痛的概念,现已广泛被人们接受,大量实验表明,伤害性感受器兴奋性的变化与一些离子通道有关,对河豚毒素不敏感的电压依赖性钠离子通道(TTXr)选择性地分布于与伤害性感受有关的初级感受神经元,炎症反应和神经损伤诱发的慢性疼痛可诱发这种TTXr功能及基因表达的变化,TTXr通道蛋白的反义寡核苷酸(antisense ODN)处理可对抗炎症或神经损伤引起的痛觉过敏或超敏,提示TTXr在伤害性感受中起重要作用,有望成为特异性镇痛药物的药理作用靶点。  相似文献   

19.
Ethanol was shown to decrease the reversal potential of tetrodotoxin-resistant (TTXr) and TTX-sensitive channels in short-term culture of the dorsal root ganglion cells. The ethanol led to alterations in ionic selectivity of the TTXr channels (its shifting from the X-th Eisenmann selectivity sequence to the XI-th one). The data obtained suggest that the findings were due to selectivity filter modification because of disturbed hydrogen bounds in the channel macromolecule.  相似文献   

20.
The contribution of Na ions to the electrically excited response was studied in the muscle fibres of mealworm larvae, Tenebrio molitor, using microelectrode techniques. When Ca ions were omitted from the external solution, no action potential could be elicited. However, addition of Na ions to Ca-free medium rendered the fibre excitable again. The amplitude of these action potentials increased with a slope of about 40 mV for a 10-fold elevation of external Na concentrations. Tetrodotoxin had no effect on the initiation of the spike, and Co ions completely suppressed it. Therefore, it seems likely that a Ca-channel, which is utilized by both Na and Ca ions, is the sole factor responsible for the action potential in the mealworm larval muscle fibre membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号