首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To utilize fermentative bacteria for producing the alternative fuel hydrogen, we performed successive rounds of P1 transduction from the Keio Escherichia coli K-12 library to introduce multiple, stable mutations into a single bacterium to direct the metabolic flux toward hydrogen production. E. coli cells convert glucose to various organic acids (such as succinate, pyruvate, lactate, formate, and acetate) to synthesize energy and hydrogen from formate by the formate hydrogen-lyase (FHL) system that consists of hydrogenase 3 and formate dehydrogenase-H. We altered the regulation of FHL by inactivating the repressor encoded by hycA and by overexpressing the activator encoded by fhlA, removed hydrogen uptake activity by deleting hyaB (hydrogenase 1) and hybC (hydrogenase 2), redirected glucose metabolism to formate by using the fdnG, fdoG, narG, focA, focB, poxB, and aceE mutations, and inactivated the succinate and lactate synthesis pathways by deleting frdC and ldhA, respectively. The best of the metabolically engineered strains, BW25113 hyaB hybC hycA fdoG frdC ldhA aceE, increased hydrogen production 4.6-fold from glucose and increased the hydrogen yield twofold from 0.65 to 1.3 mol H2/mol glucose (maximum, 2 mol H2/mol glucose).  相似文献   

2.
In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD+ ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD+ ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3.  相似文献   

3.
Ten seaweed species were surveyed for simultaneous photoevolution of hydrogen and oxygen. In an attempt to induce hydrogenase activity (as measured by hydrogen photoproduction) the seaweeds were maintained under anaerobiosis in CO2-free seawater for varying lengths of time. Although oxygen evolution was observed in every alga studied, hydrogen evolution was not observed. One conclusion of this research is that, in contrast to the microscopic algae, there is not a single example of a macroscopic alga for which the photoevolution of hydrogen has been observed, in spite of the fact that there are now at least nine macroscopic algal species known for which hydrogenase activity has been reported (either by dark hydrogen evolution or light-activated hydrogen uptake). These results are in conflict with the conventional view that algal hydrogenase can catalyze a multiplicity of reactions, one of which is the photoproduction of molecular hydrogen. Two possible explanations for the lack of hydrogen photoproduction in macroscopic algae are presented. It is postulated that electron acceptors other than carbon dioxide can take up reducing equivalents from Photosystem I to the measurable exclusion of hydrogen photoproduction. Alternatively, the hydrogenase system in macroscopic algae may be primarily a hydrogen-uptake system with respect to light-activated reactions. A simple kinetic argument based on recent measurements of the photosynthetic turnover times of simultaneous light-activated hydrogen and oxygen production is presented that supports the second explanation.  相似文献   

4.
Symbioses between uptake hydrogenase host-regulated (Hup-hr) phenotypes of Bradyrhizobium japonicum and exotic, agronomically unadapted soybean germ plasm were examined for expression of uptake hydrogenase activity. Determinations for hydrogen evolution and uptake hydrogenase activity identified five plant introduction (PI) lines which formed hydrogen-oxidizing symbioses with strains USDA 61 and PA3 6c. Hup-hr strains belonging to serogroup 94 expressed uptake hydrogenase activity in symbioses with PI 181696 and PI 219655 at rates sufficient to prevent hydrogen from escaping the nodules. The identification of soybean germ plasm forming hydrogen-oxidizing symbioses with Hup-hr bradyrhizobia potentially has implications for enhancing nitrogen fixation efficiency in soybean production.  相似文献   

5.
AIMS: To profile the fractions of bacteria in heat-treated activated sludge capable of producing hydrogen and subsequently to isolate those organisms and confirm their ability to produce hydrogen. METHODS AND RESULTS: Profiling the community composition of the microflora in activated sludge using 16S rRNA gene-directed polymerase chain reaction-denaturing gradient gel electrophoresis suggested that a majority of bacteria were various Clostridium species. This was confirmed by clone library analysis, where 80% of the cloned inserts were Clostridium sp. A total of five isolates were established on solid media. Three of them, designated as W1, W4 and W5, harboured the hydrogenase gene as determined by PCR and DNA sequence analysis (99% similarity). These isolates were similar to Clostridium butyricum and Clostridium diolis as determined by 16S rRNA gene sequence. A maximum hydrogen production yield of 220 ml H(2) g(-1) glucose was achieved by W5, which was grown on improved mineral medium by batch fermentation without pH adjustment and nitrogen sparging during fermentation. Accumulation of malic acid and fumaric acid during hydrogen fermentation might lead to higher hydrogen yields for W4 and W5. W1 is the first reported Clostridium species that can tolerate microaerobic conditions for producing hydrogen. CONCLUSION: Clostridium species in heat-treated activated sludge were the most commonly identified bacteria responsible for hydrogen production. Specific genetic markers for strains W1, W4 and W5 would be of great utility in investigating hydrogen production at the molecular level. Two previously described primer sets targeting hydrogenase genes were shown not to be specific, amplifying other genes from nonhydrogen producers. SIGNIFICANCE AND IMPACT OF THE STUDY: Clostridium species isolated from heat-treated activated sludge were confirmed as hydrogen producers during dark hydrogen fermentation. The isolates will be useful for studying hydrogen production from wastewater, including the process of gene regulation and hydrogenase activity.  相似文献   

6.
Pyrococcus furiosus has two types of NiFe-hydrogenases: a heterotetrameric soluble hydrogenase and a multimeric transmembrane hydrogenase. Originally, the soluble hydrogenase was proposed to be a new type of H2 evolution hydrogenase, because, in contrast to all of the then known NiFe-hydrogenases, the hydrogen production activity at 80°C was found to be higher than the hydrogen consumption activity and CO inhibition appeared to be absent. NADPH was proposed to be the electron donor. Later, it was found that the membrane-bound hydrogenase exhibits very high hydrogen production activity sufficient to explain cellular H2 production levels, and this seems to eliminate the need for a soluble hydrogen production activity and therefore leave the soluble hydrogenase without a physiological function. Therefore, the steady-state kinetics of the soluble hydrogenase were reinvestigated. In contrast to previous reports, a low Km for H2 (~20 μM) was found, which suggests a relatively high affinity for hydrogen. Also, the hydrogen consumption activity was 1 order of magnitude higher than the hydrogen production activity, and CO inhibition was significant (50% inhibition with 20 μM dissolved CO). Since the Km for NADP+ is ~37 μM, we concluded that the soluble hydrogenase from P. furiosus is likely to function in the regeneration of NADPH and thus reuses the hydrogen produced by the membrane-bound hydrogenase in proton respiration.  相似文献   

7.

Background

Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii “Deep ecotype” that is able to be heterologously expressed in cyanobacteria and has tolerance to partial oxygen. The A. macleodii enzyme shares sequence similarity with the uptake hydrogenases that favor hydrogen uptake activity over hydrogen evolution. To improve hydrogen evolution from the A. macleodii hydrogenase, we examined the three Fe-S clusters found in the small subunit of many [NiFe] uptake hydrogenases that presumably act as a molecular wire to guide electrons to or from the active site of the enzyme. Studies by others altering the medial cluster of a Desulfovibrio fructosovorans hydrogenase from 3Fe-4S to 4Fe-4S resulted in two-fold improved hydrogen evolution activity.

Results

We adopted a strategy of screening for improved hydrogenase constructs using an Escherichia coli expression system before testing in slower growing cyanobacteria. From the A. macleodii enzyme, we created a mutation in the gene encoding the hydrogenase small subunit that in other systems is known to convert the 3Fe-4S medial cluster to 4Fe-4S. The medial cluster substitution did not improve the hydrogen evolution activity of our hydrogenase. However, modifying both the medial cluster and the ligation of the distal Fe-S cluster improved in vitro hydrogen evolution activity relative to the wild type hydrogenase by three- to four-fold. Other properties of the enzyme including thermostability and tolerance to partial oxygen did not appear to be affected by the substitutions.

Conclusions

Our results show that substitution of amino acids altering the ligation of Fe-S clusters in the A. macleodii [NiFe] uptake hydrogenase resulted in increased hydrogen evolution activity. This activity can be recapitulated in multiple host systems and with purified protein. These results validate the approach of using an E. coli-cyanobacteria shuttle system for enzyme expression and improvement.
  相似文献   

8.
In the past, it has been difficult to discriminate between hydrogen synthesis and uptake for the three active hydrogenases in Escherichia coli (hydrogenase 1, 2, and 3); however, by combining isogenic deletion mutations from the Keio collection, we were able to see the role of hydrogenase 3. In a cell that lacks hydrogen uptake via hydrogenase 1 (hyaB) and via hydrogenase 2 (hybC), inactivation of hydrogenase 3 (hycE) decreased hydrogen uptake. Similarly, inactivation of the formate hydrogen lyase complex, which produces hydrogen from formate (fhlA) in the hyaB hybC background, also decreased hydrogen uptake; hence, hydrogenase 3 has significant hydrogen uptake activity. Moreover, hydrogen uptake could be restored in the hyaB hybC hycE and hyaB hybC fhlA mutants by expressing hycE and fhlA, respectively, from a plasmid. The hydrogen uptake results were corroborated using two independent methods (both filter plate assays and a gas-chromatography-based hydrogen uptake assay). A 30-fold increase in the forward reaction, hydrogen formation by hydrogenase 3, was also detected for the strain containing active hydrogenase 3 activity but no hydrogenase 1 or 2 activity relative to the strain lacking all three hydrogenases. These results indicate clearly that hydrogenase 3 is a reversible hydrogenase.  相似文献   

9.
Escherichia coli can perform at least two modes of anaerobic hydrogen metabolism and expresses at least two types of hydrogenase activity. Respiratory hydrogen oxidation is catalysed by two 'uptake' hydrogenase isoenzymes, hydrogenase -1 and -2 (Hyd-1 and -2), and fermentative hydrogen production is catalysed by Hyd-3. Harnessing and enhancing the metabolic capability of E. coli to perform anaerobic mixed-acid fermentation is therefore an attractive approach for bio-hydrogen production from sugars. In this work, the effects of genetic modification of the genes encoding the uptake hydrogenases, as well as the importance of preculture conditions, on hydrogen production and fermentation balance were examined. In suspensions of resting cells pregrown aerobically with formate, deletions in Hyd-3 abolished hydrogen production, whereas the deletion of both uptake hydrogenases improved hydrogen production by 37% over the parent strain. Under fermentative conditions, respiratory H2 uptake activity was absent in strains lacking Hyd-2. The effect of a deletion in hycA on H2 production was found to be dependent upon environmental conditions, but H2 uptake was not significantly affected by this mutation.  相似文献   

10.
Fermentative hydrogen production (FHP) has received a great R & D interest in recent decades, as it offers a potential means of producing H2 from a variety of renewable resources, even wastewater via a low energy continuous process. Various extracellular metabolites including ethanol, acetate, butyrate and lactate can be produced during the fermentation, building a complex metabolic network of the FHP. Except for the recognition of its complexity, the metabolic flux network has not been well understood. Studies on biochemical reactions and metabolic flux network associated with the FHP in anaerobic fermentation system have only been drawn attention in recent years. This review summarizes the biochemical reactions taking place in the metabolic network of FHP. We discuss how the key operation factors influence metabolism in the FHP process. Recently developed and applied technologies for metabolic flux analysis have been described. Future studies on the metabolic network to enhance fermentative hydrogen production by strict anaerobes are recommended. It is expected that this review can provide useful information in terms of fundamental knowledge and update technology for scientists and research engineers in the field of biological hydrogen production.  相似文献   

11.
Different patterns have been found in the pH dependence of hydrogenase activity with enzymes purified from different species of Desulfovibrio. With the cytoplasmic hydrogenase from Desulfovibrio baculatus strain 9974, the pH optima in H2 production and uptake were respectively 4.0 and 7.5 with a higher activity in production than in uptake. The highest D2-H+ exchange activity was found also at pH 4.0 but the optima differed for the HD and the H2 components. Both similarly rose when the pH decreased from 9.0 to 4.5, but the rate of H2 evolution slowed whereas the HD evolution continued rising till pH values around 3.0 were reached. The H2 to HD ratio at pH above 4.5 was higher than one. With the periplasmic hydrogenase from Desulfovibrio vulgaris Hildenborough, the highest exchange activity was near pH 5.5, the same value as in hydrogen production. The periplasmic hydrogenase from Desulfovibrio gigas had in contrast the same pH optimum in the exchange (7.5-8.0) as in the H2 uptake. The ratio of H2 to HD was below one for both enzymes. These different patterns may be related to functional and structural differences in the three hydrogenases so far studied, particularly in the composition of their catalytic centers.  相似文献   

12.
13.
Franziska Gutthann 《BBA》2007,1767(2):161-169
In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.  相似文献   

14.
绿藻光合生物制氢技术进展   总被引:2,自引:0,他引:2  
氢能作为可再生、环境友好的能源,已成为营造可持续发展的经济节约型社会的理想能源。绿藻因能利用光能分解水产氢,被称为最有应用前景的方法之一。本文将综述绿藻光合产氢的原理,介绍该生物制氢技术的研究现状和最新进展,并对其发展趋势做以展望。  相似文献   

15.
The purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS synthesizes at least three NiFe hydrogenases (Hox, Hup, Hyn). We characterized the physiological H2 consumption/evolution reactions in mutants having deletions of the structural genes of two hydrogenases in various combinations. This made possible the separation of the functionally distinct roles of the three hydrogenases. Data showed that Hox hydrogenase (unlike the Hup and Hyn hydrogenases) catalyzed the dark fermentative H2 evolution and the light-dependent H2 production in the presence of thiosulfate. Both Hox+ and Hup+ mutants demonstrated light-dependent H2 uptake stimulated by CO2 but only the Hup+ mutant was able to mediate O2-dependent H2 consumption in the dark. The ability of the Hox+ mutant to evolve or consume hydrogen was found to depend on a number of interplaying factors including both growth and reaction conditions (availability of glucose, sulfur compounds, CO2, H2, light). The study of the redox properties of Hox hydrogenase supported the reversibility of its action. Based on the results a scheme is suggested to describe the role of Hox hydrogenase in light-dependent and dark hydrogen metabolism in T. roseopersicina BBS.  相似文献   

16.
Oxygen sensitivity of hydrogenase is a critical issue in efficient biological hydrogen production. In the present study, oxygen-tolerant [NiFe]-hydrogenase from the marine bacterium, Hydrogenovibrio marinus, was heterologously expressed in Escherichia coli, for the first time. Recombinant E. coli BL21 expressing H. marinus [NiFe]-hydrogenase actively produced hydrogen, but the parent strain did not. Recombinant H. marinus hydrogenase required both nickel and iron for biological activity. Compared to the recombinant E. coli [NiFe]-hydrogenase 1 described in our previous report, recombinant H. marinus [NiFe]-hydrogenase displayed 1.6- to 1.7-fold higher hydrogen production activity in vitro. Importantly, H. marinus [NiFe]-hydrogenase exhibited relatively good oxygen tolerance in analyses involving changes of surface aeration and oxygen proportion within a gas mixture. Specifically, recombinant H. marinus [NiFe]-hydrogenase produced ∼7- to 9-fold more hydrogen than did E. coli [NiFe]-hydrogenase 1 in a gaseous environment containing 5-10% (v/v) oxygen. In addition, purified H. marinus [NiFe]-hydrogenase displayed a hydrogen evolution activity of ∼28.8 nmol H2/(min mg protein) under normal aerobic purification conditions. Based on these results, we suggest that oxygen-tolerant H. marinus [NiFe]-hydrogenase can be employed for in vivo and in vitro biohydrogen production without requirement for strictly anaerobic facilities.  相似文献   

17.
Hydrogenase activity of root nodules in the symbiotic association between Pisum sativum L. and Rhizobium leguminosarum was determined by incubating unexcised nodules with tritiated H2 and measuring tissue HTO. Hydrogenase activity saturated at 0.50 millimolar H2 and was not inhibited by the presence of 0.10 atmosphere C2H2, which prevented H2 evolution from nitrogenase. Total H2 production from nitogenase was estimated as net H2 evolution in air plus H2 exchange in 0.10 atmosphere C2H2. Although such an estimate of nitrogenase function may not be quantitatively exact, due to uncertain relationships between H2 exchange and H2 uptake activity of hydrogenase, differences observed in H2 exchange under various conditions represent an indication of changes in hydrogenase activity. Hydrogenase activity was lower in associations grown under higher photosynthetic photon flux densities and decreased relative to total H2 production by nitrogenase. Total H2 production and hydrogenase activity were maximum 28 days after planting. Thereafter, hydrogenase activity and H2 production declined, but the potential proportion of nitrogenase-produced H2 recovered by the uptake hydrogenase system increased. Of five R. leguminosarum strains tested two possessed hydrogenase activity. Strains which had the potential to reassimilate H2 had significantly higher rates of N2 reduction than those which did not exhibit hydrogenase activity.  相似文献   

18.
Membrane-associated hydrogenase was purified from the chemolithoautotrophic epsilonproteobacterium Hydrogenimonas thermophila at 152-fold purity. The hydrogenase was found to be localized in the periplasmic space, and was easily solubilized with 0.1% Triton X-100 treatment. Hydrogen oxidation activity was 1,365 μmol H2/min/mg of protein at 80 °C at pH 9.0, with phenazine methosulphate as the electron acceptor. Hydrogen production activity was 900 μmol H2/min/mg of protein at 80 °C and pH 6.0, with reduced methyl viologen as the electron donor. The hydrogenase from this organism showed higher oxygen tolerance than those from other microorganisms showing hydrogen oxidation activity. The structural genes of this hydrogenase, which contains N-terminal amino acid sequences from both small and large subunits of purified hydrogenase, were successfully elucidated. The hydrogenase from H. thermophila was found to be phylogenetically related with H2 uptake hydrogenases from pathogenic Epsilonproteobacteria.  相似文献   

19.
Sulfurimonas denitrificans was originally isolated from coastal marine sediments. It can grow with thiosulfate and nitrate or sulfide and oxygen. Recently sequencing of its genome revealed that it encodes periplasmic and cytoplasmic [NiFe]-hydrogenases but the role of hydrogen for its metabolism has remained unknown. We show the first experimental evidence that S. denitrificans can indeed express a functional hydrogen uptake active hydrogenase and can grow on hydrogen. In fact, under the provided conditions it grew faster and denser on hydrogen than on thiosulfate alone and even grew with hydrogen in the absence of reduced sulfur compounds. In our experiments, at the time points tested, the hydrogen uptake activity appeared to be related to the periplasmic hydrogenase and not to the cytoplasmic hydrogenase. Our data suggest that under the provided conditions S. denitrificans can grow more efficiently with hydrogen than with thiosulfate.  相似文献   

20.
E. coli K10 was found to grow anaerobically on molecular hydrogen by reducing nitrate, fumarate, and trimethylamine N-oxide when peptone was added to the culture medium. Molar growth yields based on consumed hydrogen estimated from the amounts of reduction products were all 7.8 g cells/mol, suggesting that 1 mol of ATP was produced in the oxidation of 1 mol of hydrogen. Hydrogenase activity measured in terms of hydrogen evolution was several times higher in cells grown on glucose than in cells grown on hydrogen in the presence of fumarate and trimethylamine N-oxide, while hydrogenase activity measured in terms of hydrogen uptake was unchanged in both cases. The ratio of hydrogenase activities measured in terms of hydrogen uptake and evolution was also high in the extract and centrifugal fractions from cells grown in hydrogen. The soluble fraction and trypsin digest of the precipitate at 100,000 X g were subjected to polyacrylamide disc gel electrophoresis and hydrogenase bands were stained by reduction of benzyl viologen with hydrogen and by oxidation of reduced methyl viologen. The resulting patterns suggest that multiple forms of hydrogenase are present and that the amounts of forms functioning in hydrogen evolution were greatly decresed in cells grown on hydrogen in the presence of acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号