首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potent cytotoxic capacity of eosinophils for parasites and host tissue has in part been attributed to the catalytic action of eosinophil peroxidase (EPO), which preferentially oxidizes Br- to the powerful bleaching oxidant HOBr in buffers that mimic serum halide composition (100 mM Cl-, 20-100 microM Br-, less than 1 microM I-). However, serum also contains 20-120 microM SCN-, a pseudohalide whose peroxidative product, HOSCN, is a weak, primarily sulfhydryl-reactive oxidant. Because of its relative abundance and high oxidation potential, we hypothesized that SCN-, not Br- or I-, is the major substrate for EPO in physiologic fluids. We find that in Earle's buffer (100 mM Cl-) supplemented with 100 microM Br- and varying concentrations of SCN-, HOBr production by activated eosinophils and purified EPO, assayed by conversion of fluorescein to dibromofluorescein, was 50% inhibited (ID50) by only 1 microM SCN-. SCN- also blocked (ID50 10 microM) EPO oxidation of I- to HOI, assayed as iodofluorescein, despite the presence of 100 microM (i.e. grossly supraphysiologic) I-. Thionitrobenzoic acid oxidation kinetics indicate that SCN- is the initial species oxidized by EPO in equimolar mixtures of SCN- and Br- and in human serum. EPO also catalyzed the covalent incorporation of [14C]SCN- into proteins in buffers regardless of Br- concentration and in human serum. Comparing the cytotoxicity of HOSCN and HOBr for host cells, we find that even subphysiologic concentrations of SCN- (3.3-10 microM) nearly completely abrogate the potent Br(-)-dependent toxicity of EPO for 51Cr-labeled aortic endothelial cells and isolated working rat hearts, recently developed models of eosinophilic endocarditis. Thus, HOSCN, hitherto best known as a bacteriostatic agent in saliva and milk, is likely also the major oxidant produced by EPO in physiologic fluids, and the presence of SCN- averts damage to EPO-coated host tissues that might otherwise accrue as a result of HOBr generation. In view of these findings, the potential role of HOSCN in eosinophil killing of parasitic pathogens deserves close examination.  相似文献   

2.
A fast-responding O2 electrode has been used to confirm and extend observations of a significant kinetic discrepancy between O2 reduction and consequent proton translocation in 'O2-pulse' experiments in intact cells of P. denitrificans. The permeant, chaotropic SCN- ion abolishes this discrepancy, and greatly increases the observable----H+/O ratio, to a value approaching its accepted, true, limiting stoichiometry. The observable H+ decay rates are very slow, particularly in the absence of SCN-. The submaximal----H+/O ratios observed in the absence of SCN- are essentially independent of the size of the O2 pulse, in a manner not easily explained by a delocalised chemiosmotic energy-coupling scheme. Osmotically active protoplasts of P. denitrificans do not show a significant kinetic discrepancy between O2 reduction and H+ translocation, even in the the absence of SCN-. However, the submaximal----H+/O ratios observed in the absence of SCN- are again essentially independent of the size of the O2 pulse. As in intact cells, the observable H+ decay rates are very slow. The energy-transfer inhibitor venturicidin causes a significant increase in the----H+/O ratio observed in protoplasts of P. denitrificans in the absence of SCN-; the decay kinetics of the H+ translocation process are also somewhat modified. Nevertheless, the----H+/O ratio observed in the presence of venturicidin is also independent of the size of the O2 pulse. This observation militates further against arguments in which (a) a non-ohmic leak of protons from the bulk aqueous phase might alone be the cause of the low----H+/O ratios observed in the absence of SCN-, and (b) in which there might be a delta p-dependent change ('redox slip') in the actual----H+/O ratio. It is concluded that the observable protonmotive activity of the respiratory chain of P. denitrificans in the absence of SCN- is directly influenced by the state of the H+-ATP synthetase in the cytoplasmic membrane of this organism. We are unable to explain the data in terms of a model in which the putative protonmotive force may be acting to affect the----H+/O ratio. The possibility is considered that the delocalised bulk-to-bulk phase membrane potential set up in response to protonmotive activity is energetically insignificant.  相似文献   

3.
Formation of OH radicals in the stomach is possible by Fenton-type reactions, as gastric juice contains ascorbic acid (AA), iron ions and H2O2. An objective of the present study is to elucidate the effects of salivary SCN- and NO2- on the hydroxylation of salicylic acid which was induced by H2O2/Fe(II) and AA/H2O2/Fe(II) systems. Thiocyanate ion inhibited the hydroxylation of salicylic acid by the above systems in acidic buffer solutions and in acidified saliva. The inhibition by SCN- was deduced to be due to SCN- -dependent scavenging of OH radicals. Nitrite ion could enhance the SCN- -dependent inhibition of the hydroxylation induced by AA/H2O2/Fe(II) systems. The enhancement was suggested to be due to scavenging of OH radicals by NO which was formed by the reactions among AA, HNO2 and SCN- contained in the reaction mixture. The concentrations of SCN- and NO2-, which were effective for the inhibition, were in ranges of their normal salivary concentrations. These results suggest that salivary SCN- can cooperate with NO2- to protect stomach from OH radicals formed by AA/H2O2/Fe(II) systems under acidic conditions.  相似文献   

4.
Oxidation of chloride and thiocyanate by isolated leukocytes   总被引:8,自引:0,他引:8  
Peroxidase-catalyzed oxidation of chloride (Cl-) and thiocyanate (SCN-) was studied using neutrophils from human blood and eosinophils and macrophages from rat peritoneal exudates. The aims were to determine whether Cl- or SCN- is preferentially oxidized and whether leukocytes oxidize SCN- to the antimicrobial oxidizing agent hypothiocyanite (OSCN-). Stimulated neutrophils produced H2O2 and secreted myeloperoxidase. Under conditions similar to those in plasma (0.14 M Cl-, 0.02-0.12 mM SCN-), myeloperoxidase catalyzed the oxidation of Cl- to hypochlorous acid (HOCl), which reacted with ammonia and amines to yield chloramines. HOCl and chloramines reacted with SCN- to yield products without oxidizing activity, so that high SCN- blocked accumulation of chloramines in the extracellular medium. Under conditions similar to those in saliva and the surface of the oral mucosa (20 mM Cl-, 0.1-3 mM SCN-), myeloperoxidase catalyzed the oxidation of SCN- to OSCN-, which accumulated in the medium to concentrations of up to 40-70 microM. Sulfonamide compounds increased the yield of stable oxidants to 0.2-0.3 mM by reacting with OSCN- to yield derivatives analogous to chloramines. Stimulated eosinophils produced H2O2 and secreted eosinophil peroxidase, which catalyzed the oxidation of SCN- to OSCN- regardless of Cl- concentration. Stimulated macrophages produced H2O2 but had low peroxidase activity. OSCN- was produced when SCN- was 0.1 mM or higher and myeloperoxidase, eosinophil peroxidase, or lactoperoxidase was added. The results indicate that SCN- rather than Cl- may be the physiologic substrate (electron donor) for eosinophil peroxidase and that OSCN- may contribute to leukocyte antimicrobial activity under conditions that favor oxidation of SCN- rather than Cl-.  相似文献   

5.
The effects of extracellular anions (10-150 mM, added as Na salts to normal growth medium) on the growth of Chinese hamster V-79 cells were examined. Additions of NaCl and NaNO3 at concentrations greater than 60 mM reduced the growth rate dose-dependently. Several other anions also inhibited cell growth in the decreasing order of potency, SCN- greater than NO2- greater than NO3- greater than Br- greater than Cl- greater than gluconate- glutamate- greater than Mes-. When the added anions were removed, the growth rate was restored to the control rate. Cell survival was markedly reduced by the addition of SCN-, but was less affected by other anions (Cl-,NO3- and NO2-) of comparable potency. The respective syntheses of cellular DNA and protein, as estimated from the incorporation of [3H]-thymidine and [14C]leucine, also decreased with the increase in the concentration (60-120 mM) of anions added, the order of potency being SCN- greater than NO2- greater than NO3- greater than Cl-. After anion-treatment, the cellular Na+ concentration increased and the cellular Cl- concentration decreased in the order of SCN- greater than NO2- greater than NO3-, Cl-, but, the cellular K+ concentration did not change significantly. These data suggest that changes in extracellular anions affect cell growth and survival, probably through changes in the intracellular Na+ or Cl- concentration and in the rates of protein and/or DNA synthesis.  相似文献   

6.
Two hypotheses have recently been proposed for the thiocyanate inhibition of gastric acid secretion--a protonophore mechanism and an uncoupling model. The mechanistic aspects for the latter scheme have been examined on the following basis: capability of generating verifiable predictions, supporting evidence that is unambiguous, and compatibility with experimental realities. Gastric microsomes bind 5 nmol of SCN-/mg, and a "pure" and highly active fraction of H+,K+-ATPase prepared from gastric microsomes binds about 15 nmol of SCN-/mg. The affinity of SCN- binding to gastric microsomes changes from 10 to 25 mM in the presence of 20 mM K+ suggesting competition between K+ and SCN-. Potassium also displaces the bound SCN- from "pure" H+,K+-ATPase with a Ki of about 25 mM. Of the cations tested--Tl+, K+, Rb+, Cs+, NH4+, Na+, and Li+--Tl+ was the most effective in displacing bound SCN- while Na+ and Li+ were without effect. The effects of anions such as Cl-, NO3-, and gluconate were found to be nonspecific and absolutely dependent on K+ as cocation. Sulfate and OCN-, on the other hand, showed an ability to displace SCN- as both K+ and Na+ salts. For SO4(-2) the K+ form was much more effective than the Na+ salt. Besides these antagonistic effects of K+ and congeners with the H+,K+-ATPase-bound SCN-, a competition between K+ and SCN- was also observed at the level of gastric K+-stimulated pNPPase reaction. The effects of SCN- and two other unrelated anions, F- and NO2-, on artificial delta pH across the microsomal vesicles exhibited a lack of appreciable change up to 5 mM and a small (about 13%) reduction between 10 and 20 mM. However, a combination of CCCP and nigericin or valinomycin completely abolished the delta pH under identical conditions. The present data in conjunction with other reports suggest that the proton impediment model best explains the gastric antisecretory effects of SCN-.  相似文献   

7.
The effects of SCN- on H+-accumulation by inside-out gastric vesicles derived from the apical membrane of secreting oxyntic cells are reported. SCN- inhibited the formation of pH gradients in Cl- and isethionate media. In Cl-, the concentration of SCN- required to achieve a certain degree of inhibition of H+ uptake (or dissipation of performed gradients) was increased with the increase in Cl- concentration, indicating some competitive phenomena between these anions. Comparison of the rates of dissipation of similar pH gradients achieved in Cl- vs. isethionate suggested the existence of a fast Cl-/SCN- exchange. In addition, direct isotopic fluxes confirmed the existence of rapid anion exchange and K-salt transport for both Cl- and SCN-. The rates of anion-exchange and K-salt transport were of similar magnitude, and the rates for SCN- in either countertransport against Cl- or cotransport with K+ were twice as fast as the equivalent values for Cl-. These mediated pathways in the apical membrane provide the possible means for rapid access of SCN- to the acidic canalicular spaces of the oxyntic cell that is implicit in recent proposals to explain SCN- inhibition of gastric HCl secretion.  相似文献   

8.
The electrogenic nature of the L-glutamate-stimulated Na+ flux was examined by measuring the distribution of the lipophilic anion [35S]thiocyanate (SCN-) into synaptic membrane vesicles that were incubated in a NaCl medium. Concentrations of L-glutamate from 10(-7) to 10(-4) M added to the incubation medium caused an enhanced intravesicular accumulation of SCN-. Based on the SCN- distribution in synaptic membrane vesicles it was calculated that 10 microM L-glutamate induced an average change in the membrane potential of + 13 mV. L-Glutamate enhanced both the Na+ and K+ conductance of these membranes as determined by increases in SCN- influx. Other neuroexcitatory amino acids and amino acid analogs (D-glutamate, L-aspartate, L-cysteine sulfinate, kainate, ibotenate, quisqualate, N-methyl-D-aspartate, and DL-homocysteate) also increased SCN- accumulation in synaptic membrane vesicles. These observations are indicative of the activation by L-glutamate and some of its analogs of excitatory amino acid receptor ion channel complexes in synaptic membranes.  相似文献   

9.
The intermediate and terminal products of cyanide and thiocyanate decomposition by individual strains of the genus Pseudomonas, P. putida strain 21 and P. stutzeri strain 18, and by their association were analyzed. The activity of the enzymes of nitrogen and sulfur metabolism in these strains was compared with that of the collection strains P. putida VKM B-2187T and P. stutzeri VKM B-975T. Upon the introduction of CN- and SCN- into cell suspensions of strains 18 and 21 in phosphate buffer (pH 8.8), the production of NH4+ was observed. Due to the high rate of their utilization, NH3, NH4+, and CNO- were absent from the culture liquids of P. putida strain 21 and P. stutzeri strain 18 grown with CN- or SCN-. Both Pseudomonas strains decomposed SCN- via cyanate production. The cyanase activity was 0.75 micromol/(min mg protein) for P. putida strain 21 and 1.26 micromol/(min mg protein) for P. stutzeri strain 18. The cyanase activity was present in the cells grown with SCN- but absent in cells grown with NH4+. Strain 21 of P. putida was a more active CN- decomposer than strain 18 of P. stutzeri. Ammonium and CO2 were the terminal nitrogen and carbon products of CN- and SCN- decomposition. The terminal sulfur products of SCN- decomposition by P. stutzeri strain 18 and P. putida strain 21 were thiosulfate and tetrathionate, respectively. The strains utilized the toxic compounds in the anabolism only, as sources of nitrogen (CN- and SCN-) and sulfur (SCN-). The pathway of thiocyanate decomposition by the association of bacteria of the genus Pseudomonas is proposed based on the results obtained.  相似文献   

10.
An ATPase is demonstrated in plasma membrane fractions of goldfish gills. This enzyme is stimulated by Cl- and HCO-3, inhibited by SCN-. Biochemical characterization shows that HCO-3 stimulation (Km = 2.5 mequiv./l) is specifically inhibited in a competitive fashion by SCN- (Ki = 0.25 mequiv./l). This residual Mg2+-dependent activity is weakly affected by SCN-. In the microsomal fraction chloride stimulation of the enzyme occurs in the presence of HCO-3 (Km for chloride = 1 mequiv/l); no stimulation is observed in the absence of HCO-3. Thiocyanate exhibits a mixed type of inhibition (Ki = 0.06 mequiv./l) towards the Cl- stimulation of the enzyme. Bicarbonate-dependent ATPase from the mitochondrial fraction is stimulated by Cl-, but this enzyme has a relatively weak affinity for this substrate (Km = 14 mequiv./l).  相似文献   

11.
Chronic respiratory infections in cystic fibrosis result from CFTR channel mutations but how these impair antibacterial defense is less clear. Airway host defense depends on lactoperoxidase (LPO) that requires thiocyanate (SCN-) to function and epithelia use CFTR to concentrate SCN- at the apical surface. To test whether CFTR mutations result in impaired LPO-mediated host defense, CF epithelial SCN- transport was measured. CF epithelia had significantly lower transport rates and did not accumulate SCN- in the apical compartment. The lower CF [SCN-] did not support LPO antibacterial activity. Modeling of airway LPO activity suggested that reduced transport impairs LPO-mediated defense and cannot be compensated by LPO or H2O2 upregulation.  相似文献   

12.
In the triad, the complex of transverse (T) tubule and sarcoplasmic reticulum (SR) Ca2+ release is induced from SR by mediation of the T-tubule. We report here evidence that this Ca2+ release is produced by depolarization of the T-tubule moiety. Thus, we found that the amount of [14C]SCN- taken up by T-tubules and triads (but not that by SR) increased upon incubation with (K, Na) gluconate, Mg ATP, indicating that the T-tubule was polarized making the lumenal side (equivalent to the extracellular side of an intact muscle fiber) more positive. Upon mixing with choline chloride, the procedure to induce Ca2+ release, [14C]SCN- uptake decreased, indicating that the T-tubule became depolarized. Activation of the T-tubule polarization by Na+ and prevention of it by digoxin [inhibitor of the (Na+, K+) pump], respectively, led to activation and inhibition of choline chloride-induced SR Ca2+ release.  相似文献   

13.
Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL   总被引:1,自引:0,他引:1  
There is evidence that LDL oxidation may render the lipoprotein atherogenic. The myeloperoxidase-hydrogen peroxide (MPO/H2O2) system of activated phagocytes may be involved in this process. Chloride is supposed to be the major substrate for MPO, generating reactive hypochlorous acid (HOCl), modifying LDL. The pseudo-halide thiocyanate (SCN-) has been shown to be a suitable substrate for MPO, forming reactive HOSCN/SCN*. As relatively abundant levels of SCN- are found in plasma of smokers--a well-known risk group for cardiovascular disease--the ability of SCN- to act as a catalyst of LDL atherogenic modification by MPO/H2O2 was tested. Measurement of conjugated diene and lipid hydroperoxide formation in LDL preparations exposed to MPO/H2O2 revealed that SCN- catalyzed lipid oxidation in LDL. Chloride did not diminish the effect of SCN- on lipid oxidation. Surprisingly, SCN inhibited the HOCl-mediated apoprotein modification in LDL. Nitrite--recently found to be a substrate for MPO--showed some competing properties. MPO-mediated lipid oxidation was inhibited by heme poisons (azide, cyanide) and catalase. Ascorbic acid was the most effective compound in inhibiting the SCN- -catalyzed reaction. Bilirubin showed some action, whereas tocopherol was ineffective. When LDL oxidation was performed with activated human neutrophils, which employ the MPO pathway, SCN- catalyzed the cell-mediated LDL oxidation. The MPO/H2O2/SCN- system may have the potential to play a significant role in the oxidative modification of LDL--an observation further pointing to the link between the long-recognized risk factors of atherosclerosis: elevated levels of LDL and smoking.  相似文献   

14.
The lactoperoxidase-catalyzed oxidation of glutathione (GSH) and thiocyanate (SCN-) was studied. Oxidation of SCN- was recorded by ultraviolet spectroscopy and by electron spin resonance (ESR). Consumption of GSH was measured by amperometric titration. One or two moles of GSH was oxidized per mole of H2O2 added, depending on the reaction conditions. Omission of SCN- prevented the oxidation of GSH. The oxidation of GSH required only catalytic amounts of SCN-, which was therefore recycled. Iodide (I-) could replace SCN-, while chloride or bromide were ineffective. The apparent Michaelis constant for SCN- was 17 microM. Oxidation of SCN- gave rise to two reactive intermediates, one stable and one unstable. The stable intermediate (-OSC. = N-(?)) decayed by a second-order reaction with a rate constant of 1.1 M-1 s-1. The decay of the unstable radical was very fast. The data (a) explain the short- and long-term antibacterial effects of lactoperoxidase-halide-H2O2 system, (b) point to possible deleterious effects due to glutathione depletion, (c) are of relevance for free radical diseases involving sulphur-centered free radicals, and (d) support previous observations on lipid peroxidation/halogenation in biological membranes, liposomes, and unsaturated fatty acids.  相似文献   

15.
The role played by a bacterial community composed of Pseudomonas putida, strain 21, Pseudomonas stutzeri, strain 18, and Pseudomonas sp., strain 5, and by physical and chemical factors in the degradation of CN- and SCN- was studied. It was shown that the degradation of CN- is determined both by the action of bacteria and by abiotic physical and chemical factors (pH, O2, temperature, the medium agitation rate, etc.). The contribution of chemical degradation was found to increase drastically at pH below 9.0; when air was blown through the medium (irrespective of the pH value); under active agitation of the medium; and when the medium surface interfacing air was increased. Even at elevated pH values (9.0-9.2), suboptimal for bacterial growth, the microbial degradation could account for at most 20-25 mg/l of CN-, regardless of its initial concentration. When CN- and SCN- were concurrently present in the medium, the former compound was the first to be degraded by microorganisms. The rate of bacterial degradation of SCN- under continuous cultivation in a chain of reactors was found to depend on its concentration, the medium flow rate, agitation rate, and the pattern of carbon source supply and could exceed 1 g/(1 day). CN- and SCN- are utilized by bacteria solely as nitrogen sources. The mechanism of CN- and SCN- degradation by the microbial community is discussed.  相似文献   

16.
Products formed from the lactoperoxidase (LPO) catalyzed oxidation of thiocyanate ion (SCN-) with hydrogen peroxide (H2O2) have been studied by 13C-NMR at pH 6 and pH 7. Ultimate formation of hypothiocyanite ion (OSCN-) as the major product correlates well with the known optical studies. The oxidation rate of SCN- appears to be greater at pH < or = 6.0. At [H2O2]/[SCN-] ratios of < or = 0.5, OSCN- is not formed immediately, but an unidentified intermediate is produced. At [H2O2]/[SCN-] > 0.5, SCN- appears to be directly oxidized to OSCN-. Once formed, OSCN- slowly degrades over a period of days to carbon dioxide (CO2), bicarbonate ion (HCO3-), and hydrogen cyanide (HCN). An additional, previously unrecognized product also appears after formation of OSCN-. On the basis of carbon-13 chemical shift information this new species is suggested to result from rearrangement of OSCN- to yield the thiooxime isomer, SCNO- or SCNOH.  相似文献   

17.
To establish the agent(s) responsible for the activity of the lactoperoxidase (LPO)/SCN-/H2O2 system, the oxidation of thiocyanate with hydrogen peroxide, catalyzed by lactoperoxidase, has been studied by 15N NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pHs. The formation of hypothiocyanite ion (OSCN-) as one of the oxidation products correlated well with the activity of the LPO/SCN-/H2O2 system and was maximum when the concentrations of the H2O2 and SCN- were nearly the same and the pH was less than 6.0. At [H2O2]/[SCN-] = 1, OSCN- decomposed very slowly back to thiocyanate. When the ratio [H2O2]/[SCN-] was above 2, formation of CN- was observed, which was confirmed by 15N NMR and also by changes in the optical spectrum of LPO. The oxidation of thiocyanate by H2O2 in the presence of LPO does not take place at pH greater than 8.0. Since thiocyanate does not bind to LPO above this pH, the binding of thiocyanate to LPO is considered to be prerequisite for the oxidation of thiocyanate. Maximum inhibition of oxygen uptake by Streptococcus cremoris 972 bacteria was observed when hydrogen peroxide and thiocyanate were present in equimolar amounts and the pH was below 6.0.  相似文献   

18.
Anion binding to neutral and positively charged lipid membranes   总被引:2,自引:0,他引:2  
P M Macdonald  J Seelig 《Biochemistry》1988,27(18):6769-6775
Aqueous anion binding to bilayer membranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was investigated by using deuterium and phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. Only those anions that exhibit chaotropic properties showed significant binding to POPC membranes. A detailed investigation of thiocyanate binding to neutral POPC and to positively charged mixed POPC/dihexadecyldimethylammonium bromide (DHDMAB) (8:2 mol/mol) membranes revealed changes in the 2H NMR quadrupole splittings from POPC specifically deuteriated at either the alpha-segment or the beta-segment of the choline head group which were consistent with a progressive accumulation of excess negative charge at the membrane surface with increasing SCN- concentration. Both the 2H and 31P NMR spectra indicated the presence of fluid lipids in a bilayer configuration up to at least 1.0 M NaSCN with no indication of any phase separation of lipid domains. Calibration of the relationship between the change in the 2H NMR quadrupole splitting and the amount of SCN- binding provided thiocyanate binding isotherms. At a given SCN- concentration the positively charged membranes bound levels of SCN- 3 times that of the neutral membranes. The binding isotherms were analyzed by considering both the electrostatic and the chemical equilibrium contributions to SCN- binding. Electrostatic considerations were accounted for by using the Gouy-Chapman theory. For 100% POPC membranes as well as for mixed POPC/DHDMAB (8:2 mol/mol) membranes the thiocyanate binding up to concentrations of 100 mM was characterized by a partition equilibrium with an association constant of K approximately 1.4 +/- 0.3 M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1. The effect of thiocyanate on chloride and sodium fluxes across the gill was studied in the goldfish Carassius auratus. At low external chloride concentrations, addition of SCN- to the bathing solution markedly inhibited chloride influx and efflux, the net flux being reversed, SCN- injection was without effect. SCN- had no effect on sodium fluxes when injected or added to the external medium. 2. The inhibition of chloride influx by SCN- was of a mixed type involving simultaneous modifications of the affinity constant of the carrier for Cl- and of the maximal Cl- influx. The affinity constant of the carrier for SCN- was 10 times lower than that for Cl-. 3. The gill of the goldfish was found to be practically impermeable to SCN-. 4. In the presence of external SCN-, the Cl-/HCO3- exchange was reversed: Cl- was lost against HCO3- which is absorbed. This suggests an obligatory exchange. 5. Exchange diffusion for chloride was also demonstrated. 6. A kinetic model is proposed to explain chloride and bicarbonate transport across the gill of Carassius auratus.  相似文献   

20.
We investigated the potential role of the co-substrate, thiocyanate (SCN-), in modulating the catalytic activity of myeloperoxidase (MPO) and other members of the mammalian peroxidase superfamily (lactoperoxidase (LPO) and eosinophil peroxidase (EPO)). Pre-incubation of SCN- with MPO generates a more complex biological setting, because SCN- serves as either a substrate or inhibitor, causing diverse impacts on the MPO heme iron microenvironment. Consistent with this hypothesis, the relationship between the association rate constant of nitric oxide binding to MPO-Fe(III) as a function of SCN- concentration is bell-shaped, with a trough comparable with normal SCN- plasma levels. Rapid kinetic measurements indicate that MPO, EPO, and LPO Compound I formation occur at rates slower than complex decay, and its formation serves to simultaneously catalyze SCN- via 1e- and 2e- oxidation pathways. For the three enzymes, Compound II formation is a fundamental feature of catalysis and allows the enzymes to operate at a fraction of their possible maximum activities. MPO and EPO Compound II is relatively stable and decays gradually within minutes to ground state upon H2O2 exhaustion. In contrast, LPO Compound II is unstable and decays within seconds to ground state, suggesting that SCN- may serve as a substrate for Compound II. Compound II formation can be partially or completely prevented by increasing SCN- concentration, depending on the experimental conditions. Collectively, these results illustrate for the first time the potential mechanistic differences of these three enzymes. A modified kinetic model, which incorporates our current findings with the mammalian peroxidases classic cycle, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号