首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The initiation of programmed cell death at CD95 (Fas, Apo-1) is achieved by forming a death-inducing signaling complex (DISC) at the cytoplasmic membrane surface. Assembly of the DISC has been proposed to occur via homotypic interactions between the death domain (DD) of FADD and the cytoplasmic domain of CD95. Previous analysis of the FADD/CD95 interaction led to the identification of a putative CD95 binding surface within FADD DD formed by alpha helices 2 and 3. More detailed analysis of the CD95/FADD DD interaction now demonstrates that a bimodal surface exists in the FADD DD for interaction with CD95. An expansive surface on one side of the domain is composed of elements in alpha helices 1, 2, 3, 5, and 6. This major surface is common to many proteins harboring this motif, whether or not they are associated with programmed cell death. A secondary surface resides on the opposite face of the domain and involves residues in helices 3 and 4. The major surface is topologically similar to the protein interaction surface identified in Drosophila Tube DD and the death effector domain of hamster PEA-15, two physiologically unrelated proteins which interact with structurally unrelated binding partners. These results demonstrate the presence of a structurally conserved surface within the DD which can mediate protein recognition with homo- and heterotypic binding partners, whereas a second surface may be responsible for stabilizing the higher order complex in the DISC.  相似文献   

2.
3.
Moncrieffe MC  Stott KM  Gay NJ 《FEBS letters》2005,579(18):3920-3926
The interaction between the death domains (DDs) of Tube and the protein kinase Pelle is an important component of the Toll pathway. Published crystallographic data suggests that the Pelle-Tube DD interface is plastic and implies that in addition to the two predominant Pelle-Tube interfaces, a third interaction is possible. We present the NMR solution structure of the isolated death domain of Pelle and a study of the interaction between the DDs of Pelle and Tube. Our data suggests the solution structure of the isolated Pelle DD is similar to that of Pelle DD in complex with Tube. Additionally, they suggest that the plasticity observed in the crystal structure may not be relevant in the functioning death domain complex.  相似文献   

4.
FADD (also known as MORT-1) is an essential adapter protein that couples the transmembrane receptors Fas (CD95) and tumor necrosis factor receptor-1 (TNF-R1) to intracellular cysteine proteases known as caspases, which propagate and execute the programmed cell death-inducing signal triggered by Fas ligand (FasL, CD95L) and TNF. FADD contains 208 amino acid residues, and comprises two functionally and structurally distinct domains: an N-terminal death effector domain (DED) that promotes activation of the downstream proteolytic cascade through binding of the DED domains of procaspase-8; and a C-terminal death domain (DD). FADD-DD provides the site of FADD recruitment to death receptor complexes at the plasma membrane by, for example, interaction with the Fas receptor cytoplasmic death domain (Fas-DD), or binding of the TNF-R1 adapter molecule TRADD. We have determined the three-dimensional solution structure and characterised the internal polypeptide dynamics of human FADD-DD using heteronuclear NMR spectroscopy of (15)N and (13)C,(15)N-labelled samples. The structure comprises six alpha-helices joined by short loops and displays overall similarity to the death domain of the Fas receptor. The analysis of the dynamic properties reveals no evidence of contiguous stretches of polypeptide chain with increased internal motion, except at the extreme chain termini. A pattern of increased rates of amide proton solvent exchange in the alpha3 helix correlates with a higher degree of solvent exposure for this secondary structure element. The properties of the FADD-DD structure are discussed with respect to previously reported mutagenesis data and emerging models for FasL-induced FADD recruitment to Fas and caspase-8 activation.  相似文献   

5.
PEA-15 is a small, death effector-domain (DED)-containing protein that was recently demonstrated to inhibit tumor necrosis factor-alpha-induced apoptosis and to reverse the inhibition of integrin activation due to H-Ras. This led us to investigate the involvement of PEA-15 in Ras signaling. Surprisingly, PEA-15 activates the extracellular signal receptor-activated kinase (ERK) mitogen-activated protein kinase pathway in a Ras-dependent manner. PEA-15 expression in Chinese hamster ovary cells resulted in an increased mitogen-activated protein kinase kinase and ERK activity. Furthermore, PEA-15 expression leads to an increase in Ras guanosine 5'-triphosphate loading. PEA-15 bypasses the anchorage dependence of ERK activation. Finally, the effects of PEA-15 on integrin signaling are separate from those on ERK activation. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to activate ERK. The ability of PEA-15 to simultaneously inhibit apoptosis and potentiate Ras-to-Erk signaling may be of importance for oncogenic processes.  相似文献   

6.
The death domain (DD) superfamily comprising the death domain (DD) subfamily, the death effector domain (DED) subfamily, the caspase recruitment domain (CARD) subfamily and the pyrin domains (PYD) subfamily is one of the largest classes of protein interaction modules and plays a pivotal role in the apoptosis, inflammation, and immune cell signaling pathways. Despite the biological importance of the death domain superfamily, structural and in vitro biochemical studies have been limited because these domains are prone to aggregate under physiological conditions. Here, we describe a generalized method, termed semi-refolding, that is particularly applicable for purification of the functional death domain superfamily. The recombinant proteins Caspase-1 CARD, AIM2 PYD, NALP3 PYD, and RIP1 DD from inclusion bodies were successfully purified using this method.  相似文献   

7.
The death domain and death effector domain are two common motifs that mediate protein-protein interactions between components of cell death signaling complexes. The mechanism by which these domains engage their binding partners has been explored by extensive mutagenesis of two death adaptors, FADD and TRADD, suggesting that a death adaptor can discriminate its intended binding partners from other proteins harboring similar motifs. Death adaptors are found to utilize one of two topologically conserved surfaces for protein-protein interaction, whether that partner is another adaptor or its cognate receptor. These surfaces are topologically related to the interaction between death domains observed in the x-ray crystal structure of the Drosophila adaptor Tube bound to Pelle kinase. Comparing the topology of protein-protein interactions for FADD complexes to TRADD complexes reveals that FADD uses a Tube-like surface in each of its death motifs to engage either CD95 or TRADD. TRADD reverses these roles, employing a Pelle-like surface to interact with either receptor TNFR1 or adaptor FADD. Since death adaptors display a Tube-like or Pelle-like preference for engaging their binding partners, Tube/Pelle-like pairing provides a mechanism for death adaptor discrimination of death receptors.  相似文献   

8.
ERK2 nuclear-cytoplasmic distribution is regulated in response to hormones and cellular state without the requirement for karyopherin-mediated nuclear import. One proposed mechanism for the movement of ERK2 into the nucleus is through a direct interaction between ERK2 and nucleoporins present in the nuclear pore complex. Previous reports have attributed regulation of ERK2 localization to proteins that activate or deactivate ERK2, such as the mitogen-activated protein (MAP) kinase kinase MEK1 and MAP kinase phosphatases. Recently, a small non-catalytic protein, PEA-15, has also been demonstrated to promote a cytoplasmic ERK2 localization. We found that the MAP kinase insert in ERK2 is required for its interaction with PEA-15. Consistent with its recognition of the MAP kinase insert, PEA-15 blocked activation of ERK2 by MEK1, which also requires the MAP kinase insert to interact productively with ERK2. To determine how PEA-15 influences the localization of ERK2, we used a permeabilized cell system to examine the effect of PEA-15 on the localization of ERK2 and mutants that have lost the ability to bind PEA-15. Wild type ERK2 was unable to enter the nucleus in the presence of an excess of PEA-15; however, ERK2 lacking the MAP kinase insert largely retained the ability to enter the nucleus. Binding assays demonstrated that PEA-15 interfered with the ability of ERK2 to bind to nucleoporins. These results suggest that PEA-15 sequesters ERK2 in the cytoplasm at least in part by interfering with its ability to interact with nucleoporins, presenting a potential paradigm for regulation of ERK2 localization.  相似文献   

9.
Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs) mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC) data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) protein in the complex with a mitogen-activated protein (MAP) kinase, extracellular regulated kinase 2 (ERK2), which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.  相似文献   

10.
Activation of Raf-1 suppresses integrin activation, potentially through the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). However, bulk ERK1/2 activation does not correlate with suppression. PEA-15 reverses suppression of integrin activation and binds ERK1/2. Here we report that PEA-15 reversal of integrin suppression depends on its capacity to bind ERK1/2, indicating that ERK1/2 function is indeed required for suppression. Mutations in either the death effector domain or C-terminal tail of PEA-15 that block ERK1/2 binding abrogated the reversal of integrin suppression. Furthermore, we used ERK/p38 chimeras and site-directed mutagenesis to identify ERK1/2 residues required for binding PEA-15. Mutations of residues that precede the alphaG helix and within the mitogen-activated protein kinase insert blocked ERK2 binding to PEA-15, but not activation of ERK2. These ERK2 mutants blocked the ability of PEA-15 to reverse suppression of integrin activation. Thus, PEA-15 regulation of integrin activation depends on its binding to ERK1/2. To directly test the role of ERK1/2 localization in suppression, we enforced membrane association of ERK1 and 2 by joining a membrane-targeting CAAX box sequence to them. Both ERK1-CAAX and ERK2-CAAX were membrane-localized and suppressed integrin activation. In contrast to suppression by membrane-targeted Raf-CAAX, suppression by ERK1/2-CAAX was not reversed by PEA-15. Thus, ERK1/2 are the Raf effectors for suppression of integrin activation, and PEA-15 reverses suppression by binding ERK1/2.  相似文献   

11.
The structure of FADD and its mode of interaction with procaspase-8   总被引:6,自引:0,他引:6  
The structure of FADD has been solved in solution, revealing that the death effector domain (DED) and death domain (DD) are aligned with one another in an orthogonal, tail-to-tail fashion. Mutagenesis of FADD and functional reconstitution with its binding partners define the interaction with the intracellular domain of CD95 and the prodomain of procaspase-8 and reveal a self-association surface necessary to form a productive complex with an activated "death receptor." The identification of a procaspase-specific binding surface on the FADD DED suggests a preferential interaction with one, but not both, of the DEDs of procaspase-8 in a perpendicular arrangement. FADD self-association is mediated by a "hydrophobic patch" in the vicinity of F25 in the DED. The structure of FADD and its functional characterization, therefore, illustrate the architecture of key components in the death-inducing signaling complex.  相似文献   

12.
Signaling in apoptosis and inflammation is often mediated by proteins of the death domain superfamily in the Fas/FADD/Caspase-8 or the Apaf-1/Caspase-9 pathways. This superfamily currently comprises the death domain (DD), death effector domain (DED), caspase recruitment domain (CARD), and pyrin domain (PYD) subfamilies. The PYD subfamily is most abundant, but three-dimensional structures are only available for the subfamilies DD, DED, and CARD, which have an antiparallel arrangement of six alpha helices as common fold. This paper presents the NMR structure of PYD of NALP1, a protein that is involved in the innate immune response and is a component of the inflammasome. The structure of NALP1 PYD differs from all other known death domain superfamily structures in that the third alpha helix is replaced by a flexibly disordered loop. This unique feature appears to relate to the molecular basis of familial Mediterranean fever (FMF), a genetic disease caused by single-point mutations.  相似文献   

13.
Tumor necrosis factor receptor-1 death domain (TNFR-1 DD) is the intracellular functional domain responsible for the receptor signaling activities. The solution structure of the R347K mutant of TNFR-1 DD was solved by NMR spectroscopy. A total of 20 structures were calculated by means of hybrid distance geometry-simulated annealing using a total of 1167 distance constraints and 117 torsion angle constraints. The atomic rms distribution about the mean coordinate positions for the 20 structures for residues composing the secondary structure region is 0.40 A for the backbone atoms and 1.09 A for all atoms. The structure consists of six antiparallel alpha-helices arranged in a similar fashion to the other members of the death domain superfamily. The secondary structure and three-dimensional structure of R347K TNFR1-DD are very similar to the secondary structure and deduced topology of the R347A TNFR1-DD mutant. Mutagenesis studies identified critical residues located in alpha2 and part of alpha3 and alpha4 that are crucial for self-interaction and interaction with TRADD. Structural superposition with previously solved proteins in the death domain superfamily reveals that the major differences between the structures reside in alpha2, alpha3, and alpha4. Interestingly, these regions correspond to the binding sites of TNFR1-DD, providing a structural basis for the specificity of death domain interactions and its subsequent signaling event.  相似文献   

14.
Lee SW  Ko YG  Bang S  Kim KS  Kim S 《Molecular microbiology》2000,35(6):1540-1549
FADD is a mammalian pro-apoptotic mediator consisting of the N-terminal death effector domain (DED) and the C-terminal death domain (DD). The N-terminal 88-residue fragment of murine FADD was defined as the stable structural unit of DED, as determined by proteolytic digestion and conformational analysis. This domain induced bacterial as well as mammalian cell death, whereas the full-length or DD of FADD did not. The Escherichia coli cells expressing FADD-DED showed elongated cell morphology and an increased level of nicked chromosomal DNA and mutation. The lethality of FADD-DED was abolished by co-expression of thioredoxin and superoxide dismutase or relieved by the addition of vitamin E as a reducing agent and under anaerobic growth conditions. The toxicity of FADD-DED was genetically suppressed by various oxidoreductases of E. coli. All these results suggest that the death effector domain of mammalian FADD induced bacterial cell death by enhancing cellular levels of reactive oxygen species (ROS).  相似文献   

15.
16.
Ying Liu  Yan Zhang  Jia‐Huai Wang 《Proteins》2014,82(12):3476-3482
Ankyrins (Ank) are a ubiquitously expressed family of multifunctional membrane adapter proteins. Ankyrin G (AnkG) is critical for assembling and maintenance of the axon initial segment. Here we present the 2.1 Å crystal structure of human AnkG death domain (hAnkG‐DD). The core death domain is composed of six α‐helices and three 310‐helices. It forms a hydrophobic pocket on the surface of the molecule. The C‐terminal tail of the hAnkG‐DD curves back to have the aromatic ring of a phenylalanine residue, Phe100 insert into this pocket, which anchors the flexible tail onto the core domain. Related DDs were selected for structure comparison. The major variations are at the C‐terminal region, including the α6 and the long C‐terminal extension. The results of size exclusion chromatography and analytical ultracentrifugation suggest that hAnkG‐DD exists as monomer in solution. Our work should help for the future investigation of the structure–function of AnkG. Proteins 2014; 82:3476–3482. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Calmodulin binding to the Fas death domain. Regulation by Fas activation   总被引:3,自引:0,他引:3  
Fas (APO-1/CD95) is a cell surface receptor that initiates apoptotic pathways, and its cytoplasmic domain interacts with various molecules suggesting that Fas signaling is complex and regulated by multiple proteins. Calmodulin (CaM) is an intracellular Ca(2+)-binding protein, and it mediates many of the effects of Ca2+. Here, we demonstrate that CaM binds to Fas directly and identify the CaM-binding site on the cytoplasmic death domain (DD) of Fas. Fas binds to CaM-Sepharose and is co-immunoprecipitated with CaM. Other death receptors, such as tumor necrosis factor receptor, DR4, and DR5 do not bind to CaM. The interaction between Fas and CaM is Ca(2+)-dependent. Deletion mapping analysis with various GST-fused Fas cytoplasmic domain fragments revealed that the fragment containing helices 1, 2, and 3 of the Fas DD has the CaM-binding ability. Sequence analysis of this fragment predicted a potential CaM-binding site in helix 2 and connected loops. A valine 254 to asparagine mutation in this region, which is analogous to the identified mutant allele of Fas in lpr mice that have a deficiency in Fas-mediated apoptosis, showed reduced CaM binding. Computer modeling of the interaction between CaM and helix 2 of the Fas DD predicted that amino acids, which are important for Fas-CaM binding, and point mutations of these amino acids caused reduced Fas-CaM binding. The interaction between Fas and CaM is increased approximately 2-fold early upon Fas activation (at 30 min) and is decreased to approximately 50% of control at 2 h. These findings suggest a novel function of CaM in Fas-mediated apoptosis.  相似文献   

18.
The death domain superfamily: a tale of two interfaces?   总被引:12,自引:0,他引:12  
The death domain superfamily, composed of the death domain (DD), death effector domain (DED) and caspase recruitment domain (CARD) families of proteins, plays a pivotal role in signaling events that regulate apoptosis. This review compares and contrasts the ten superfamily members with known structures. In particular, the two heterodimerization modes described to date, the CARD-CARD interaction between human Apaf-1 and procaspase 9, and the DD-DD interaction between Drosophila Pelle and Tube, are examined. The dimerization modes are strikingly different and, importantly, are not mutually exclusive. In fact, a trimer can be formed using both interactions.  相似文献   

19.
Huntington disease is a devastating neurodegenerative disease caused by the expansion of a polymorphic glutamine tract in huntingtin. The huntingtin interacting protein (HIP-1) was identified by its altered interaction with mutant huntingtin. However, the function of HIP-1 was not known. In this study, we identify HIP-1 as a proapoptotic protein. Overexpression of HIP-1 resulted in rapid caspase 3-dependent cell death. Bioinformatics analyses identified a novel domain in HIP-1 with homology to death effector domains (DEDs) present in proteins involved in apoptosis. Expression of the HIP-1 DED alone resulted in cell death indistinguishable from HIP-1, indicating that the DED is responsible for HIP-1 toxicity. Furthermore, substitution of a conserved hydrophobic phenylalanine residue within the HIP-1 DED at position 398 eliminated HIP-1 toxicity entirely. HIP-1 activity was found to be independent of the DED-containing caspase 8 but was significantly inhibited by the antiapoptotic protein Bcl-x(L), implicating the intrinsic pathway of apoptosis in HIP-1-induced cell death. Co-expression of a normal huntingtin fragment capable of binding HIP-1 significantly reduced cell death. Our data identify HIP-1 as a novel proapoptotic mediator and suggest that HIP-1 may be a molecular accomplice in the pathogenesis of Huntington disease.  相似文献   

20.
While mitogen-activated protein kinase signaling pathways constitute highly regulated networks of protein-protein interactions, little quantitative information for these interactions is available. Here we highlight recent fluorescence anisotropy binding studies that focus on the interactions of ERK1 and ERK2 with PEA-15 (antiapoptotic phosphoprotein enriched in astrocytes-15 kDa), a small protein that sequesters ERK2 in the cytoplasm. The regulation of ERK2 by PEA-15 is appraised in the light of a simple equilibrium-binding model for reversible ERK2 nucleoplasmic-cytoplasmic shuttling, which elaborates on the theory of Burack and Shaw (J. Biol. Chem. 280, 3832-3837; 2005). Also highlighted is the recent observation that the peptide N-QKGKPRDLELPLSPSL-C, derived from the docking site for ERK/JNK and LEL (DEJL) in Elk-1, displaces PEA-15 from ERK2. It is proposed that the C-terminus of PEA-15 ((121)LXLXXXXKK(129)) is a reverse DEJL domain [which has a general consensus of R/K-phi(A)-X(3/4)-phi(B), where phi(A) and phi(B) are hydrophobic residues (Leu, Ile, or Val)], which mediates one arm of a bidentate PEA-15 interaction with ERK2. The notion that PEA-15 is a potent inhibitor of many ERK2-mediated phosphorylations, by virtue of its ability to block ERK2-DEJL domain interactions, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号