首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.  相似文献   

2.
Activation of the hepatocyte growth factor (HGF) receptor in epithelial cells results in lamellipodia protrusion, spreading, migration, and tubule formation. We have previously reported that these morphogenic effects are dependent on MAPK activation at focal adhesions. In the present study we demonstrate that activated ERK phosphorylates paxillin on serine 83 and that mutation of this site eliminates HGF-stimulated increased association of paxillin and FAK in subconfluent cells. Failure to activate FAK at focal adhesions results in a loss of FAK-PI 3-kinase association and the marked reduction of Rac activation after HGF stimulation. Expression of paxillin mutants that disrupt ERK association or phosphorylation inhibits HGF-induced cell spreading, migration, and tubulogenesis. These data demonstrate that the paxillin-MAPK complex serves as a central regulator of HGF-stimulated FAK and Rac activation in the vicinity of focal adhesions, thus promoting the rapid focal adhesion turnover and lamellipodia extension that are required for migratory and tubulogenic responses.  相似文献   

3.
Reactive oxygen species (ROS) function as signaling molecules mainly by reversible oxidation of redox-sensitive target proteins. ROS can be produced in response to integrin ligation and growth factor stimulation through Rac1 and its effector protein NADPH oxidase. One of the central roles of Rac1-NADPH oxidase is actin cytoskeletal rearrangement, which is essential for cell spreading and migration. Another important regulator of cell spread is focal adhesion kinase (FAK), a coordinator of integrin and growth factor signaling. Here, we propose a novel role for NADPH oxidase as a modulator of the FAK autophosphorylation site. We found that Rac1-NADPH oxidase enhanced the phosphorylation of FAK at Y397. This site regulates FAK's ability to act as a scaffold for EGF-mediated signaling, including activation of ERK. Accordingly, we found that EGF-induced activation of FAK at Y925, the following activation of ERK, and phosphorylation of FAK at the ERK-regulated S910-site depended upon NADPH oxidase. Furthermore, the inhibition of NADPH oxidase caused excessive focal adhesions, which is in accordance with ERK and FAK being modulators of focal adhesion dissociation. Our data suggest that Rac1 through NADPH oxidase is part of the signaling pathway constituted by FAK, Rac1, and ERK that regulates focal adhesion disassembly during cell spreading.  相似文献   

4.
The relationship between focal adhesion protein (FAK) activity and loss of cell-matrix contact during apoptosis is not entirely clear nor has the role of FAK in chemically induced apoptosis been studied. We investigated the status of FAK phosphorylation and cleavage in renal epithelial cells during apoptosis caused by the nephrotoxicant dichlorovinylcysteine (DCVC). DCVC treatment caused a loss of cell-matrix contact which was preceded by a dissociation of FAK from the focal adhesions and tyrosine dephosphorylation of FAK. Paxillin was also dephosphorylated at tyrosine. DCVC treatment activated caspase-3 which was associated with cleavage of FAK. However, FAK cleavage occurred after cells had already lost focal adhesions indicating that cleavage of FAK by caspases is not responsible for loss of FAK from focal adhesions. Accordingly, although inhibition of caspase activity with zVAD-fmk blocked activation of caspase-3, FAK cleavage, and apoptosis, it neither affected dephosphorylation nor translocation of FAK or paxillin. However, zVAD-fmk completely blocked the cell detachment caused by DCVC treatment. Orthovanadate prevented DCVC-induced tyrosine dephosphorylation of both FAK and paxillin; however, it did not inhibit DCVC-induced apoptosis and actually potentiated focal adhesion disorganization and cell detachment. Thus, FAK dephosphorylation and loss of focal adhesions are not due to caspase activation; however, caspases are required for FAK proteolysis and cell detachment.  相似文献   

5.
Insulin plays an important role in muscle cell survival and proliferation. However, there is no report showing the role of insulin in spreading of muscle cells. In the present report, we showed that insulin enhances muscle cell spreading concomitant with enhanced tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin. Moreover, insulin can stimulate the cell spreading even in presence of integrin alpha5 blockers although to a lesser extent as compared to control. Cell adhesion was not dependent on insulin and serum, and decreased in presence of integrin blockers. We found direct association of FAK with affinity purified insulin receptors using in vitro kinase assay. The increase in FAK tyrosine phosphorylation was associated with increase in its kinase activity and further supported by increased phosphotyrosine accumulation on focal adhesions and increased membrane localization of FAK after stimulation by insulin. Moreover, insulin-mediated muscle cell spreading was dependent upon phosphatidylinositol 3-kinase (PI 3-kinase) activity. PI 3-kinase activity was found to be associated with FAK and the FAK associated PI 3-kinase activity enhanced when cells were plated in presence of insulin. We also observed activation of MAP kinases, i.e., ERK-1/-2 during insulin mediated muscle cell spreading. In conclusion, FAK, PI 3-kinase, and MAP kinase are important components of pathway(s) that regulate insulin stimulated muscle cell spreading.  相似文献   

6.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

7.
Diurnal phagocytosis of shed photoreceptor outer-segment particles by retinal pigment epithelial (RPE) cells belongs to a group of conserved clearance mechanisms employing αv integrins upstream of tyrosine kinases and Rho GTPases. In this study, we tested the interdependence of the tyrosine kinases focal adhesion kinase (FAK) and Mer tyrosine kinase (MerTK) and Rho GTPases during engulfment. RPE cells activated and redistributed Rac1, but not RhoA or Cdc42, during phagocytosis. Toxin B, overexpression of dominant-negative Rac1, or decreasing Rac1 expression prevented particle engulfment. Fluorescence microscopy showed that Rac1 inhibition had no obvious effect on F-actin arrangement in resting RPE but prevented recruitment of F-actin to surface-bound phagocytic particles. Quantification of active GTP-Rac1 in wild-type and mutant RPE in culture and in vivo revealed that Rac1 activation during phagocytosis requires αvβ5 integrin and its ligand milk fat globule EGF factor-8 (MFG-E8) but not the receptor tyrosine kinase MerTK. Abolishing tyrosine kinase signaling downstream of αvβ5 toward MerTK by inhibiting FAK specifically or tyrosine kinases generally neither prevented Rac1 activation nor F-actin recruitment during phagocytosis. Likewise, inhibiting Rac1 had no effect on FAK or MerTK activation. We conclude that MerTK activation via FAK and F-actin recruitment via Rac1 both require MFG-E8-ligated αvβ5 integrin. Both pathways are independently activated and required for clearance phagocytosis.  相似文献   

8.
Cell migration requires extension of lamellipodia that are stabilized by formation of adhesive complexes at the leading edge. Both processes are regulated by signaling proteins recruited to nascent adhesive sites that lead to activation of Rho GTPases. The Ajuba/Zyxin family of LIM proteins are components of cellular adhesive complexes. We show that cells from Ajuba null mice are inhibited in their migration, without associated abnormality in adhesion to extracellular matrix proteins, cell spreading, or integrin activation. Lamellipodia production, or function, is defective and there is a selective reduction in the level and tyrosine phosphorylation of FAK, p130Cas, Crk, and Dock180 at nascent focal complexes. In response to migratory cues Rac activation is blunted in Ajuba null cells, as detected biochemically and by FRET analysis. Ajuba associates with the focal adhesion-targeting domain of p130Cas, and rescue experiments suggest that Ajuba acts upstream of p130Cas to localize p130Cas to nascent adhesive sites in migrating cells thereby leading to the activation of Rac.  相似文献   

9.
It has been proposed that the focal adhesion kinase (FAK) mediates focal adhesion formation through tyrosine phosphorylation during cell adhesion. We investigated the role of FAK in focal adhesion structure and function. Loading cells with a glutathione-S-transferase fusion protein (GST-Cterm) containing the FAK focal adhesion targeting sequence, but not the kinase domain, decreased the association of endogenous FAK with focal adhesions. This displacement of endogenous FAK in both BALB/c 3T3 cells and human umbilical vein endothelial cells loaded with GST-Cterm decreased focal adhesion phosphotyrosine content. Neither cell type, however, exhibited a reduction in focal adhesions after GST-Cterm loading. These results indicate that FAK mediates adhesion-associated tyrosine phosphorylation, but not the formation of focal adhesions. We then examined the effect of inhibiting FAK function on other adhesion-dependent cell behavior. Cells microinjected with GST-Cterm exhibited decreased migration. In addition, cells injected with GST-Cterm had decreased DNA synthesis compared with control-injected or noninjected cells. These findings suggest that FAK functions in the regulation of cell migration and cell proliferation.  相似文献   

10.
Intracellular pH (pHi) dynamics regulates diverse cellular processes, including remodeling of focal adhesions. We now report that focal adhesion kinase (FAK), a key regulator of focal adhesion remodeling, is a pH sensor responding to physiological changes in pH. The initial step in FAK activation is autophosphorylation of Tyr397, which increased with higher pHi. We used a genetically encoded biosensor to show increased pH at focal adhesions as they mature during cell spreading. We also show that cells with reduced pHi had attenuated FAK-pY397 as well as defective cell spreading and focal adhesions. Mutagenesis studies indicated FAK-His58 is critical for pH sensing and molecular dynamics simulations suggested a model in which His58 deprotonation drives conformational changes that may modulate accessibility of Tyr397 for autophosphorylation. Expression of FAK-H58A in fibroblasts was sufficient to restore defective autophosphorylation and cell spreading at low pHi. These data are relevant to understanding cancer metastasis, which is dependent on increased pHi and FAK activity.  相似文献   

11.
Both epidermal growth factor (EGF) and the extracellular matrix components have been implicated in the pathobiology of adenocarcinomas by somewhat poorly understood mechanisms. We have addressed this problem using an in vitro model comprising the colon adenocarcinoma cell line HT29-D4, wherein the role of EGF and type IV collagen on cell adhesion was examined. We demonstrated that the effect of EGF on HT29-D4 cell adhesion was regulated by type IV collagen in a time- and dose-dependent manner. The incorporation of a panel of monoclonal antibodies to integrins alpha1beta1, alpha2beta1 and alpha3beta1 in adhesion medium revealed that EGF-mediated increase in the cell adhesion was mediated essentially by alpha2beta1, and the use of flow cytometry led us to conclude that this EGF effect was mediated by an increase in alpha2beta1 activation and not by an increase in cell surface expression of integrin. An indirect immunofluorescence technique was employed to demonstrate that focal adhesion kinase (FAK) and alpha2beta1 integrin were present in focal complexes in large EGF-induced lamellipodia whereas actin cytoskeleton was organised in small tips that colocalised with FAK. This pattern was observed at early time points (15 min) with a strong FAK tyrosine phosphorylation and with an increase in mitogen-activated protein kinase activity (5-15 min) as measured by immunoprecipitation and immunoblotting. We conclude that at early time points of cell adhesion and spreading, EGF exerted an inside-out regulation of alpha2beta1 integrin in HT29-D4 cells. This regulation seemed to be mediated by EGF-dependent FAK phosphorylation entailing an increase in integrin activation and their recruitment in numerous focal complexes. Furthermore after activation, FAK induced aggregation of actin-associated proteins (paxillin, vinculin and other tyrosine phosphorylated proteins) in focal complexes, leading to organisation of actin cytoskeleton that is involved in lamellipodia formation. Finally, activated alpha2beta1 integrins intervened in all these processes clustered in small focal complexes but not in focal adhesions.  相似文献   

12.
We developed new image analysis tools to analyse quantitatively the extracellular-matrix-dependent cell spreading process imaged by live-cell epifluorescence microscopy. Using these tools, we investigated cell spreading induced by activation of the small GTPase, Rap1. After replating and initial adhesion, unstimulated cells exhibited extensive protrusion and retraction as their spread area increased, and displayed an angular shape that was remodelled over time. In contrast, activation of endogenous Rap1, via 007-mediated stimulation of Epac1, induced protrusion along the entire cell periphery, resulting in a rounder spread surface, an accelerated spreading rate and an increased spread area compared to control cells. Whereas basal, anisotropic, spreading was completely dependent on Src activity, Rap1-induced spreading was refractory to Src inhibition. Under Src inhibited conditions, the characteristic Src-induced tyrosine phosphorylations of FAK and paxillin did not occur, but Rap1 could induce the formation of actomyosin-connected adhesions, which contained vinculin at levels comparable to that found in unperturbed focal adhesions. From these results, we conclude that Rap1 can induce cell adhesion and stimulate an accelerated rate of cell spreading through mechanisms that bypass the canonical FAK-Src-Paxillin signalling cascade.  相似文献   

13.
At mitosis, focal adhesions disassemble and the signal transduction from focal adhesions is inactivated. We have found that components of focal adhesions including focal adhesion kinase (FAK), paxillin, and p130CAS (CAS) are serine/threonine phosphorylated during mitosis when all three proteins are tyrosine dephosphorylated. Mitosis-specific phosphorylation continues past cytokinesis and is reversed during post-mitotic cell spreading.We have found two significant alterations in FAK-mediated signal transduction during mitosis. First, the association of FAK with CAS or c-Src is greatly inhibited, with levels decreasing to 16 and 13% of the interphase levels, respectively. Second, mitotic FAK shows decreased binding to a peptide mimicking the cytoplasmic domain of beta-integrin when compared with FAK of interphase cells. Mitosis-specific phosphorylation is responsible for the disruption of FAK/CAS binding because dephosphorylation of mitotic FAK in vitro by protein serine/threonine phosphatase 1 restores the ability of FAK to associate with CAS, though not with c-Src. These results suggest that mitosis-specific modification of FAK uncouples signal transduction pathways involving integrin, CAS, and c-Src, and may maintain FAK in an inactive state until post-mitotic spreading.  相似文献   

14.
We have previously shown that mutation of the two tyrosines in the cytoplasmic domain of integrin subunit beta1 (Y783 and Y795) to phenylalanines markedly reduces the capability of beta1A integrins to mediate directed cell migration. In this study, beta1-dependent cell spreading was found to be delayed in GD25 cells expressing beta1A(Y783/795F) compared to that in wild-type GD25-beta1A. Focal adhesion kinase (FAK) tyrosine phosphorylation and activation were severely impaired in response to beta1-dependent adhesion in GD25-beta1A(Y783/795F) cells compared to that in wild-type GD25-beta1A or mutants in which only a single tyrosine was altered (beta1A(Y783F) or beta1A(Y795F)). Phosphorylation site-specific antibodies selective for FAK phosphotyrosine 397 indicated that the defect in FAK phosphorylation via beta1A(Y783/795F) lies at the level of the initial autophosphorylation step. Indeed, beta1A-dependent tyrosine phosphorylation of tensin and paxillin was lost in the beta1A(Y783/795F) cells, consistent with the impairment in FAK activation. In contrast, p130(CAS) overall tyrosine phosphorylation was unaffected by the beta1 mutations. Despite the defect in beta1-mediated FAK activation, FAK was still localized to focal adhesions. Taken together, the phenotype of the GD25-beta1A(Y783/795F) cells resembles, but is distinct from, the phenotype observed in FAK-null cells. These observations argue that tyrosines 783 and 795 within the cytoplasmic tail of integrin subunit beta1A are critical mediators of FAK activation and cell spreading in GD25 cells.  相似文献   

15.
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK auto-phosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.  相似文献   

16.
Microinjection and scrape-loading have been used to load cells in culture with soluble protein tyrosine phosphatases (FTPs). The introduction of protein tyrosine phosphatases into cells caused a rapid (within 5 minutes) decrease in tyrosine phosphorylation of major tyrosine phosphorylated substrates, including the focal adhesion kinase and paxillin. This decrease was detected both by blotting whole cell lysates with anti-phosphotyrosine antibodies and visualizing the phosphotyrosine in focal adhesions by immunofluorescence microscopy. After 30 minutes, many of the cells injected with tyrosine phosphatases revealed disruption of focal adhesions and stress fibers. To determine whether this disruption was due to the dephosphorylation of FAK and its substrates in focal adhesions, we have compared the effects of protein tyrosine phosphatase microinjection with the effects of displacing FAK from focal adhesions by microinjection of a dominant negative FAK construct. Although both procedures resulted in a marked decrease in the level of phosphotyrosine in focal adhesions, disruption of focal adhesions and stress fibers only occurred in cells loaded with exogenous protein tyrosine phosphatases. These results lead us to conclude that although tyrosine phosphorylation regulates focal adhesion and stress fiber stability, this does not involve FAK nor does it appear to involve tyrosine-phosphorylated proteins within focal adhesions. The critical tyrosine phosphorylation event is upstream of focal adhesions, a likely target being in the Rho pathway that regulates the formation of stress fibers and focal adhesions.  相似文献   

17.
pp125FAK is a tyrosine kinase that appears to regulate the assembly of focal adhesions and thereby promotes cell spreading on the extracellular matrix. In some cells, the C terminus of pp125FAK is expressed as a separate protein, pp41/43FRNK. We have previously shown that overexpression of pp41/43FRNK inhibits tyrosine phosphorylation of pp125FAK and paxillin and, in addition, delays cell spreading and focal adhesion assembly. Thus, pp41/43FRNK functions as a negative inhibitor of adhesion signaling and provides a tool to dissect the mechanism by which pp125FAK promotes cell spreading. We report here that the inhibitory effects of pp41/43FRNK expression can be rescued by the co-overexpression of wild-type pp125FAK and partially rescued by catalytically inactive variants of pp125FAK. However, coexpression of an autophosphorylation site mutant of pp125FAK, which fails to bind the SH2 domain of pp60c-Src, or a mutant that fails to bind paxillin did not promote cell spreading. In contrast, expression of pp41/43FRNK and pp60c-Src reconstituted cell spreading and tyrosine phosphorylation of paxillin but did so without inducing tyrosine phosphorylation of pp125FAK. These data provide additional support for a model whereby pp125FAK acts as a "switchable adaptor" that recruits pp60c-Src to phosphorylate paxillin, promoting cell spreading. In addition, these data point to tyrosine phosphorylation of paxillin as being a critical step in focal adhesion assembly.  相似文献   

18.
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK autophosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.Key words: fibronectin, DFMO, polyamines, FAK, Src  相似文献   

19.
BACKGROUND: The ability of a cell to polarize and move is governed by remodeling of the cellular adhesion/cytoskeletal network that is in turn controlled by the Rho family of small GTPases. However, it is not known what signals lie downstream of Rac1 and Cdc42 during peripheral actin and adhesion remodeling that is required for directional migration. RESULTS: We show here that individual members of the Rho family, RhoA, Rac1, and Cdc42, direct the specific intracellular targeting of c-Src tyrosine kinase to focal adhesions, lamellipodia, or filopodia, respectively, and that the adaptor function of c-Src (the combined SH3/SH2 domains coupled to green fluorescent protein) is sufficient for targeting. Furthermore, Src's catalytic activity is absolutely required at these peripheral cell-matrix attachment sites for remodeling that converts RhoA-dependent focal adhesions into smaller focal complexes along Rac1-induced lamellipodia (or Cdc42-induced filopodia). Consequently, cells in which kinase-deficient c-Src occupies peripheral adhesion sites exhibit impaired polarization toward migratory stimuli and reduced motility. Furthermore, phosphorylation of FAK, an Src adhesion substrate, is suppressed under these conditions. CONCLUSIONS: Our findings demonstrate that individual Rho GTPases specify Src's exact peripheral localization and that Rac1- and Cdc42-induced adhesion remodeling and directed cell migration require Src activity at peripheral adhesion sites.  相似文献   

20.
Inhibition of pp125FAK in cultured fibroblasts results in apoptosis   总被引:17,自引:0,他引:17       下载免费PDF全文
《The Journal of cell biology》1996,135(5):1383-1390
The tyrosine kinase called pp125FAK is believed to play an important role in integrin-mediated signal transduction. pp125FAK is associated both functionally and spatially with integrins, which are the cell surface receptors for extracellular matrix components. Although the precise function of pp125FAK is not known, two possibilities have been proposed: pp125FAK may regulate the assembly of focal adhesions in spreading or migrating cells, or pp125FAK may participate in a signal transduction cascade to inform the nucleus that the cell is anchored. To test these models in living cells, a peptide representing the focal adhesion kinase (FAK)-binding site of the beta 1 tail was coupled to carrier protein and injected into cultured cells to competitively inhibit the binding of pp125FAK to endogenous integrin, thus inhibiting activation of pp125FAK on a cell-by-cell basis. In addition, an antibody directed against an epitope adjacent to the focal adhesion targeting sequence on pp125FAK was microinjected, as an alternative means of inhibiting pp125FAK activation. It was observed that when rounded cells were injected with either the integrin peptide or the anti-FAK antibody, the cells rapidly began to apoptose, within 4 h after injection. These results indicate that pp125FAK may play a critical role in suppressing apoptosis in fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号