首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we have attempted to determine whether the systemic administration of CpG oligodeoxynucleotide (CpG-ODN) 1826 would protect mice against systemic lethal Candida albicans infection. CpG-ODNs were found completely to protect mice from death and also reduced the growth of C. albicans in the kidneys. The administration of CpG-ODNs resulted in early interleukin (IL)-12 mRNA expression in the kidneys and an increase in serum IL-12 levels. The protective activity of CpG-ODN was abolished in IL-12-deficient (IL-12-/-) mice, thereby indicating the IL-12-dependency inherent to the effects of CpG-ODN. The protective effect of CpG-ODN was not associated with the activity of NF-kappaB. Interestingly, in tumor necrosis factor (TNF)-alpha-deficient (TNF-/-) mice CpG-ODN neither exerted protective effects nor induced IL-12 expression. These data indicate that CpG-ODN protects animals against lethal C. albicans challenge via a pathway that involves the TNF-alpha-dependent induction of IL-12.  相似文献   

2.
3.
CpG oligodeoxynucleotides (CpG-ODNs) stimulate innate and adaptive immunity by binding to TLR9 molecules. Paradoxically, expression of the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) is induced following i.v. CpG-ODN administration to mice. CpG-ODNs induced selective IDO expression by a minor population of splenic CD19+ dendritic cells (DCs) that did not express the plasmacytoid DC marker 120G8. Following CpG-ODN treatment, CD19+ DCs acquired potent IDO-dependent T cell suppressive functions. Signaling through IFN type I receptors was essential for IDO up-regulation, and CpG-ODNs induced selective activation of STAT-1 in CD19+ DCs. Thus, CpG-ODNs delivered systemically at relatively high doses elicited potent T cell regulatory responses by acting on a discrete, minor population of splenic DCs. The ability of CpG-ODNs to induce both stimulatory and regulatory responses offers novel opportunities for using them as immunomodulatory reagents but may complicate therapeutic use of CpG-ODNs to stimulate antitumor immunity in cancer patients.  相似文献   

4.
Unmethylated CpG oligodeoxynucleotides (CpG-ODNs) interact with Toll-like receptor (TLR) 9 to activate macrophage/microglia in central nervous system (CNS). Here, we investigated the potential involvement of the chemokine CCL9 and its receptor CCR1 in the effects of CpG-ODNs on macrophage/microglial cells. CpG-ODNs enhanced the expression of TLR9 mRNA of RAW264.7 macrophage and BV2 microglia cells time dependently. The expression of CCL9 of macrophages/microglia showed different responsiveness upon stimulation with a variety of CpG-ODN sequences. The CpG-ODNs-mediated induction of CCL9 was TLR9/MyD88 dependent and associated with activation of stress kinases, particularly ERK, p38 MAPK and PI3K. The expression of CCR1 was also significantly increased by CpG-ODNs that increased CCL9 expression. These results reveal the potential involvement of CCL9 and CCR1 in regulation of macrophage and microglial cells by CpG-ODNs and may help improving our understanding about the role of the chemokine/chemokine receptor pairs in macrophage/microglia under physiologic and pathologic conditions.  相似文献   

5.
Bacterial DNA activates the innate immune system via interactions with Toll-like receptor 9 (TLR9). This receptor recognizes CpG-oligodeoxynucleotides (CpG-ODNs) mimicking the CpG dinucleotides in certain sequence contexts characterizing this DNA. Most studies have shown increased osteoclast differentiation by TLR ligands. We found that activation of TLRs (specifically TLR4 and TLR9) in early osteoclast precursors results in inhibition of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation. Our objective is to identify the mechanism leading to this inhibitory effect of a TLR ligand. Since both RANKL-RANK and CpG-ODN-TLR9 interactions result in NF-kappaB activation, p38 and ERK phosphorylation, and TNF-alpha synthesis (all implicated in osteoclastogenesis), we hypothesized that CpG-ODN (but not RANKL) in addition induces the synthesis of an anti-osteoclastogenic factor. Control osteoclast precursors, and cells treated with RANKL, CpG-ODN, or their combination were studied using DNA arrays (GEArray Q Series Mouse NF-kappaB Signaling Pathway Gene Array, MM-016, SuperArray). We found a marked increase in the mRNA levels of the osteoclastogenesis inhibitor interleukin-12 (IL-12) in osteoclast precursors treated with CpG-ODN and CpG-ODN + RANKL. Northern and Western analyses, together with ELISA, confirmed the DNA array studies. In correlation with these findings, IL-12 inhibited RANKL-induced osteoclast differentiation and specific anti-IL-12-antibodies inhibited the anti-osteoclastogenic effect of CpG-ODN. In conclusion, activation of TLR9 by its ligand, CpG-ODN, results in synthesis and release of IL-12 opposing RANKL-induced osteoclast differentiation.  相似文献   

6.
CpG-oligonucleotides (CpG-ODNs), mimicking bacterial DNA, have recently been shown to stimulate prostate cancer invasion in vitro via Toll-like receptor 9 (TLR9). Since cyclooxygenase 2 (COX-2), frequently overexpressed in multiple tumor types including prostate cancer, is a causal factor for tumor development, invasion and metastasis, an interesting question is raised whether TLR9 regulates COX-2 expression in prostate cancer cells. To address this question, herein we examined COX-2 expression in PC-3 cells stimulated with different doses and time courses of CpG-ODNs. The regulatory role of NF-κB in TLR9-mediated COX-2 expression was also investigated. CpG-ODN was found to up-regulate the expression of COX-2 in PC-3 cells in a dose- and time-dependent manner, but have little impact on COX-1 expression. Moreover, CpG-ODN also promoted nuclear translocation and activation of NF-κB, which appeared to be required for COX-2 induction by CpG-ODN. Overall, TLR9 up-regulates COX-2 expression in prostate cancer cells, at least partially through the activation of NF-κB, which may be implicated in tumor invasion and metastasis.  相似文献   

7.
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG phosphorothioate (PS CpG-ODN) are known to decrease IgE synthesis in Th2 allergy responses. Nonetheless, the therapeutic role of PS CpG-ODN is limited due to cytotoxicity. Therefore, we developed a phosphodiester (PO) form of CpG-ODN (46O) with reduced toxicity but effective against allergies. In this study, we first compared the toxicity of 46O with CpG-ODNs containing a PS backbone (1826S). We also investigated the therapeutic efficacy and mechanism of 46O injected intravenously in a mouse model of ovalbumin (OVA)-induced atopic dermatitis (AD). To elucidate the mechanism of 46O underlying the inhibition of IgE production, IgE- and TGF-β-associated molecules were evaluated in CD40/IL-4- or LPS/IL-4-stimulated B cells. Our data showed that the treatment with 46O was associated with a lower hematological toxicity compared with 1826S. In addition, injection with 46O reduced erythema, epidermal thickness, and suppressed IgE and IL-4 synthesis in mice with OVA-induced AD. Additionally, 46O induced TGF-β production in LPS/IL-4-stimulated B cells via inhibition of Smad7, which suppressed IgE synthesis via interaction between Id2 and E2A. These findings suggest that enhanced TGF-β signaling is an effective treatment for IgE-mediated allergic conditions, and 46O may be safe and effective for treating allergic diseases such as AD and asthma.  相似文献   

8.
Several phosphorothioate antisense oligodeoxynucleotides (ODN) are developed to target factors potentially involved in tumor growth and apoptosis suppression. Among them, the 18-mer G3139 (Oblimersen), which targets Bcl-2, is currently being tested in phase II and phase III clinical trials for various tumors in combination with chemotherapy. On the other hand, ODNs containing CpG dinucleotides (CpG-ODN) within specific-sequence contexts (CpG motifs) have been shown to activate rodent or primate immune cells via toll-like receptor 9 (TLR9) and have demonstrated remarkable T cell-dependent antitumor efficacy in a series of murine tumor models. However, immune cell activation by CpG-ODN is largely diminished upon C-5 methylation at CpG cytosine. As G3139 contains CpG motifs, we questioned whether the antitumor effects seen in human tumor xenografts might be abrogated by cytosine C-5 methylation of G3139, which retained the ability of G3139 to suppress Bcl-2 expression in tissue culture, or by similar derivatization of other phosphorothioate ODNs developed for the immune activation of rodent or human cells. The in vivo antitumor efficacy of the immunostimulatory H1826 and H2006 ODNs was compared with that of G3139. Bcl-2 suppression achieved by G3139 purportedly sensitizes tumor cells toward cytotoxic agents, and some of the experiments employed combinations of ODN with such drugs as cisplatin or etoposide. H1826, H2006, and G3139 all produced similar, striking, growth inhibitory effects on either H69 SCLC, A2780 ovarian carcinoma, or A549 lung adenocarcinoma human tumor xenografts at doses of 0.3 mg/kg and 1 mg/kg (H1826, H2006) or 12 mg/kg (G3139) per day. In contrast, the H2006-mC (1 mg/kg) or G3139-mC (12 mg/kg) derivatives demonstrated no significant antitumor effects. The combination of G3139 (12 mg/kg) with cisplatin produced some additive antitumor efficacy, which was not seen in combinations of G3139-mC (12 mg/kg) or H1826 (1 mg/kg) with cisplatin. G3139, at a dose of 12 mg/kg, alone induced extensive enlargement of the spleen. Immunostimulation was evaluated in vitro by flow cytometric measurements of the CD80 and CD86 activation markers found on CD19+ murine splenocytes. The CpG-ODN producing strong antitumor effects in vivo also induced these activation markers in vitro, in contrast to the in vivo inactive G3139-mC. Our data indicate a significant contribution of the immunostimulatory properties of CpG-ODN (including G3139) to the antitumor effects observed in nude mouse xenograft models. This is in contrast to previous data presented by other authors indicating that the activity of G3139 in human tumor xenografts was Bcl-2 specific. Furthermore, as nude mice are devoid of T cells, a T cell-mediated immune response apparently is not required for the potent antitumor responses observed here; innate immune responses are sufficient.  相似文献   

9.
Unmethylated cytosine-phosphate-guanine (CpG) dinucleotides flanked by specific bases in bacterial DNA induce a favorable immune response by acting as danger signals to the host. Synthetic oligodeoxynucleotides containing CpG motifs (CpG-ODNs) also act like the unmethylated CpG oligonucleotides in bacterial DNA. In the present study, we investigated the effects of synthetic CpG-ODN on the protection of olive flounder (Paralichthys olivaceus) against infection by Philasterides dicentrarchi, a pathogen of scuticociliatosis, through two consecutive experiments (trial I and II). Fish were intraperitoneally (i.p.) injected with CpG-ODN 1668 or GpC-ODN 1720 at different doses (3 microg in trial I and 10 microg in trial II), and after one week the fish were i.p. challenged with P. dicentrarchi. In both trial I and II, fish injected with CpG-ODN 1668 showed significantly higher serum scuticocidal activity than fish injected with PBS alone, while the scuticocidal activity disappeared by heat-inactivation. This result suggests that CpG-ODN might activate an alternative pathway of complement of olive flounder, and complement-mediated killing might be an important innate immune factor in the resistance against P. dicentrarchi infection. Although the cumulative mortality was largely different between trials I and II, the relative survival rate of fish injected with a high dose of CpG-ODN 1668 was considerably higher than that of fish injected with a low dose of this ODN, while the relative survival rate was not different between fish injected with the high dose and low dose of GpC-ODN 1720. The results of the present study suggest that CpG-ODNs may be used as potential immunostimulants to lessen cultured fish loss caused by scuticociliates.  相似文献   

10.
Recognition of oligodeoxynucleotides containing CpG motifs (CpG-ODNs) by toll-like receptor 9 (TLR9) inhibits RANKL-induced osteoclastogenesis from precursors. This inhibitory effect suggests the possibility of using this strategy to block pathological bone loss. However, the enhancing effect of CpG-ODNs on OC formation from RANKL-primed pre-osteoclasts (pOCs) has hampered their clinical use. In this report, we developed a CpG-KSK13 oligonucleotide with an alternative CpG motif, and tested its effect on osteoclastogenesis in comparison with previously used murine CpG motif (CpG-1826) or human CpG motif (CpG-2006) oligonucleotides. Murine CpG-1826 inhibited RANKL-induced OC formation from BMMs but not from RANKL-primed pOCs, while CpG-KSK13 treatment strongly inhibited OC formation from both BMM and primed pOC cells. CpG-KSK13 also showed a potent inhibitory effect on human OC differentiation using peripheral blood mononuclear cells (PBMCs), which was in contrast to the species-specific response of murine CpG-1826 or human CpG-2006. Moreover, CpG-KSK13 effectively inhibited NFATc1 activity, but not NF-κB or AP-1 activity, and decreased TREM-2 promoter activity and subsequent surface expression of the TREM-2 protein induced by M-CSF and RANKL. These results demonstrate that the recognition of CpG-KSK13 via TLR9 inhibits osteoclastogenesis by down-regulating TREM-2 expression. Thus, our findings provide evidence for the potential use of CpG-KSK13 as an anti-osteoclastogenic agent for human and for pre-clinical animals.  相似文献   

11.
12.
Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG-ODNs) function as powerful immune adjuvants by activating macrophages, dendritic cells, and B cells. However, the molecular recognition mechanism that initiates signaling in response to CpG-ODN has not fully been identified. We show in this study that peritoneal macrophages from SCID mice having mutations in the catalytic subunit of DNA-protein kinase (DNA-PKcs) were almost completely defective in the production of IL-10 and in ERK activation when treated with CpG-ODN. In contrast, IL-12 p70 production significantly increased. Furthermore, small interfering RNA (siRNA)-mediated knockdown of DNA-PKcs expression in the mouse monocyte/macrophage cell line RAW264.7 led to reduced IL-10 production and ERK activation by CpG-ODN. IL-10 and IL-12 p70 production, but not ERK activation, are blocked by chloroquine, an inhibitor of endosomal acidification. Endosomal translocation of CpG-ODN in a complex with cationic liposomes consisting of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (CpG-DOTAP-liposomes) decreased IL-10 production and ERK activation, whereas the endosomal escape of CpG-ODN in a complex with cationic liposomes consisting of DOTAP and dioleyl-phosphatidylethanolamine (DOPE) (CpG-DOTAP/DOPE-liposomes) increased. In contrast, IL-12 p70 production was increased by CpG-DOTAP-liposomes and decreased by CpG-DOTAP/DOPE-liposomes. IL-10 production induced by CpG-DOTAP/DOPE-liposomes was not observed in macrophages from SCID mice. Thus, our findings suggest that DNA-PKcs in the cytoplasm play an important role in CpG-ODN-induced production of IL-10 in macrophages. In addition, DNA-PKcs-mediated production of IL-10 and IL-12 p70 can be regulated by manipulating the intracellular trafficking of CpG-ODN in macrophages.  相似文献   

13.
Synthetic nonmethylated oligonucleotides containing CpG dinucleotides (CpG-ODNs) have been shown to exhibit immunostimulatory activity. CpG-ODNs have the capacity to directly activate B cells, macrophages, and dendritic cells, and we show here that this is reflected by cell surface binding of oligonucleotides to these cell subsets. However, T cells are not directly activated by CpG-ODNs, which correlates with the failure to bind to the T-cell surface. Efficient competition for CpG-induced B-cell activation by non-CpG-containing oligonucleotides suggests that oligonucleotides might bind to an as yet undefined sequence-nonspecific receptor prior to cellular activation. Induction of protective T-cell responses against challenge infection with lymphocytic choriomeningitis virus (LCMV) or with recombinant vaccinia virus expressing the LCMV glycoprotein was achieved by immunizing mice with the immunodominant major histocompatibility complex class I-binding LCMV glycoprotein-derived peptide gp33 together with CpG-ODNs. In these experiments, B cells, potentially serving as CpG-ODN-activated antigen-presenting cells (APCs), were not required for induction of protective immunity since CpG-ODN-gp33-immunized B-cell-deficient mice were equally protected against challenge infection with both viruses. This finding suggested that macrophages and/or dendritic cells were sufficiently activated in vivo by CpG-ODNs to serve as potent APCs for the induction of naive T cells. Furthermore, treatment with CpG-ODN alone induced protection against infection with Listeria monocytogenes via antigen-independent activation of macrophages. These data suggest that CpG activation of macrophages and dendritic cells may provide a critical step in CpG-ODN adjuvant activity.  相似文献   

14.
15.
The immune system of vertebrates detects bacterial DNA as a "danger signal" based on the presence of unmethylated CpG motifs. We examined whether oligodeoxynucleotides (ODNs) with CpG motifs (CpG-ODNs) also induce mobilization of hematopoietic progenitor cells (HPCs). Mice challenged with CpG-ODNs showed an increase in peripheral blood colony-forming units (CFU) with a peak at day 4 after treatment, associated with an increase, starting 30 min after CpG treatment, in serum levels of mouse keratinocyte-derived chemokine (mKC), a functional homolog of human interleukin (IL) 8; production of granulocyte-colony-stimulating factor (CSF) was also detected. Mobilization and mKC induction were sequence-specific and dose-dependent occurring even with low doses of CpG-ODNs. Interestingly, intestinal cells were involved in mKC production. HPC mobilization by CpG-ODNs was dependent on peripheral blood mononuclear cells since mobilization was reduced in neutrophil-depleted mice. Moreover, CpG-ODN treatment significantly increased G-CSF mobilizing capacity. Finally, pretreatment with an anti-mKC neutralizing antibody significantly reduced CpG-induced mobilization, further supporting a role for mKC. Thus, bacterial DNA is a "danger signal" not only for immune cells but also for hematopoietic cells, communicating the need for increased hematopoiesis during infections and for the renewal of the immune system. The HPC mobilization activity of CpG-ODNs will need to be considered in the design of treatment regimens for cancer clinical trials using CpG-ODNs in association with chemotherapy.  相似文献   

16.
17.
The molecular details of 1-->3-beta-glucans, a fungal cell wall component, induced inflammatory responses are not well understood. In the present study, we conducted a systematic analysis of the molecular events leading to tumor necrosis factor (TNF)-alpha production after glucan stimulation of macrophages. We demonstrated that activation of nuclear factor kappaB (NF-kappaB) is essential in zymosan A (a source of 1-->3-beta-glucans)-induced TNF-alpha production in macrophages (RAW264.7 cells). Zymosan A-induced TNF-alpha protein production was associated with an increase in the TNF-alpha gene promoter activity. Activation of the TNF-alpha gene promoter was dependent on activation of NF-kappaB. Time course studies indicated that DNA binding activity of NF-kappaB preceded TNF-alpha promoter activity. Inhibition of NF-kappaB activation led to a dramatic reduction in both TNF-alpha promoter activity and TNF-alpha protein production in the response to zymosan A. Mutation of a major NF-kappaB binding site (kappa3) in the gene promoter resulted in a significant decrease in the induction of the gene promoter by zymosan A, while mutation of Egr or CRE sites failed to inhibit the response to zymosan. Together, these results strongly suggest that NF-kappaB is involved in signal transduction of 1-->3-beta-glucans-induced TNF-alpha expression.  相似文献   

18.
When macrophages phagocytose chitin (N-acetyl-d-glucosamine polymer) microparticles, mitogen-activated protein kinases (MAPK) are immediately activated, followed by the release of Th1 cytokines, but not IL-10. To determine whether phagocytosis and macrophage activation in response to chitin microparticles are dependent on membrane cholesterol, RAW264.7 macrophages were treated with methyl-beta-cytodextrin (MBCD) and stimulated with chitin. These results were compared with the corresponding effects of bacterial components including heat-killed (HK) Mycobacterium bovis bacillus Calmette-Guèrin (BCG) and an oligodeoxynucleotide (ODN) of bacterial DNA (CpG-ODN). The MBCD treatment did not alter chitin binding or the phagocytosis of chitin particles 20 min after stimulation. At the same time, however, chitin-induced phosphorylation of cellular MAPK was accelerated and enhanced in an MBCD dose-dependent manner. The increased phosphorylation was also observed for chitin phagosome-associated p38 and ERK1/2. In contrast, CpG-ODN and HK-BCG induced activation of MAPK in MBCD-treated cells at levels comparable to, or only slightly more than, those of control cells. We also found that MBCD treatment enhanced the production of tumor necrosis factor-alpha (TNF-alpha) and the expression of cyclooxygenase-2 (COX-2) in response to chitin microparticles. In neither MBCD- nor saline-treated macrophages, did chitin particles induce detectable IL-10 mRNA synthesis. CpG-ODN induced TNF-alpha production, and COX-2 expression were less sensitive to MBCD treatment. Among the agonists studied, our results indicate that macrophage activation by chitin microparticles was most sensitive to cholesterol depletion, suggesting that membrane structures integrated by cholesterol are important for physiological regulation of chitin microparticle-induced cellular activation.  相似文献   

19.
20.
Unmethylated CpG oligodinucleotides (CpG-ODN) flanked by specific bases found in bacterial DNA are known to stimulate innate immune responses. In this study, synthetic CpG-ODNs were evaluated for their in vitro stimulation of leukocyte and in vivo protection against Salmonella enteritidis (SE) in neonatal chickens. Our studies showed that CpG-ODN stimulated bactericidal activities, releasing granules (degranulation) and generating reactive oxygen species (oxidative burst), in chicken heterophils and up regulated nitric oxide production in chicken peripheral blood monocytes. When day-old chickens were given (i.p.) synthetic CpG-ODNs followed by oral challenge of SE, a significant reduction (p<0.05) of organ invasion by SE was observed in chickens pretreated with CpG-ODN containing the immunostimulatory GTCGTT motif. This CpG-OND also significantly reduced mortality of chickens with acute peritoneal infection of SE. Our study provides evidence that immunostimulatory CpG-ODN stimulated innate immune activities and enhanced the resistance to infectious pathogens in neonatal chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号