首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present three novel mutations in the G6PD gene and discuss the changes they cause in the 3-dimensional structure of the enzyme: 573C-->G substitution that predicts Phe to Leu at position 191 in the C-terminus of helix alphae, 851T-->C mutation which results in the substitution 284Val--> -->Ala in the beta+alpha domain close to the C-terminal part of helix alphaj, and 1175T-->C substitution that predicts Ile to Thr change at position 392.  相似文献   

2.
3.
G6PD Toronto     
Members of a Toronto family of Northern European ancestry were found to have a deficiency of red cell and white cell glucose 6-phosphate dehydrogenase (G6PD) activity. The hemizygous propositus had neonatal hyperbilirubinemia and subsequent episodes of hemolytic jaundice associated with respiratory infections and exposure to paint fumes. Characterization of the enzyme revealed that it was a variant which had not been previously described, and it was named 6GPD Toronto.This study was supported by grants MT 696 from the Medical Research Council of Canada and GM 15253 from the National Institutes of Health.  相似文献   

4.
5.
6.
Glucose-6-phosphate dehydrogenase (G6PD; E.C.1.1.1.49) deficiency is the most common human enzymopathy; more than 300 different biochemical variants of the enzyme have been described. In many parts of the world the Mediterranean type of G6PD deficiency is prevalent. However, G6PD Mediterranean has come to be regarded as a generic term applied to similar G6PD mutations thought, however, to represent a somewhat heterogeneous group. A C----T mutation at nucleotide 563 of G6PD Mediterranean has been identified by Vulliamy et al., and the same mutation has been found by De Vita et al. in G6PD Mediterranean, G6PD Sassari, and G6PD Cagliari. The latter subjects had an additional mutation, at nucleotide 1311, that did not produce a coding change. We have examined genomic DNA of five patients--four of Spanish origin and one of Jewish origin--having enzymatically documented G6PD Mediterranean. All had both the mutation at nucleotide 563 and that at nucleotide 1311. A sixth sample, resembling G6PD Mediterranean kinetically but with a slightly rapid electrophoretic mobility, was designated G6PD Andalus and was found to have a different mutation, a G----A transition at nucleotide 1361, producing an arginine-to-histidine substitution. These studies suggest that G6PD Mediterranean is, after all, relatively homogeneous.  相似文献   

7.
8.
A Pekrun  S W Eber  W Schr?ter 《Blut》1989,58(1):11-14
Two new G6PD variants with severe enzyme deficiency in Switzerland (G6PD Avenches, G6PD I) and in Germany (G6PD Moosburg, G6PD II) are described. One patient had suffered from severe postpartal hyperbilirubinemia, the other one presented with chronic hemolysis and remittent hyperbilirubinemia. Both variants showed diminished electrophoretic mobility, both variants were heat labile. The Michaelis-Menten constants KM for glucose-6-phosphate and for NADP+ were normal. 2-Desoxy-glucose-6-phosphate was utilized by G6PD I in a higher and by G6PD II at a lower rate than by the normal enzyme. Desamino-NADP+ and galactose-6-phosphate were utilized by both variants at a normal rate. The electrophoretic separation of membrane proteins of G6PD II showed both in the presence and in the absence of 6-mercaptoethanol no difference concerning the formation of membrane protein aggregates between patient and normal control.  相似文献   

9.
Summary Two new G6PD variants have been found in red blood cells of the members of a French family originating from Lozere. The father is hemizygous for an electrophoretically fast variant with mild enzyme deficiency (50–60% of normal). The abnormal paternal G6PD gene is segregating in his daughter who is double heterozygous for maternal and paternal variants. This mutant enzyme, different from previously described variants is designated as Gd Lozère. The mother is heterozygous for another G6PD variant. Two sons are hemizygous for this latter mutant enzyme characterized by a moderate deficiency (25–30% of normal) and slower electrophoretic mobility with some slightly altered kinetic properties. This G6PD has been identified as Gd Trinacria like.These two abnormal enzymes are not associated with any hemolytic problem. Case reported is the first showing the segregation of two new mutant enzymes, distinct from common G6PD variants, among the members of the same family.  相似文献   

10.
G6PD Konan and G6PD Ube are the most common glucose-6-phosphate dehydrogenase (G6PD) variants found in Japan. To clarify the molecular abnormality of these two variants, the entire coding region was amplified by polymerase chain reaction from genomic DNA (G6PD Konan) or cDNA (G6PD Ube). Direct sequencing revealed that both variants have the same nucleotide substitution (241 C to T) in exon 4, which predicts an Arg to Cys substitution at amino acid 81.  相似文献   

11.
The Jews of Kurdistan are a small inbred population with a high incidence of -thalassaemia and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Recently, it was reported that the -thalassaemia in this population shows an unusual mutational diversity; 13 different mutations were identified, of which 4 had not previously been observed in any other population. In contrast, we now report that the G6PD deficiency, which has the highest known incidence in the world, and which affects about 70% of males, is almost entirely attributable to a single widespread mutation, G6PD Mediterranean.  相似文献   

12.
13.
The symposium on “G6PD Deficiency, Diet, and Adaptation to Malaria” was held in Cortona, Italy on July 3,4,5 1995 under the auspices of the Congress of the International Union of Anthropological and Ethnological Sciences (IUAES). The Congress had actually taken place in Florence in April 1995, and the G6PD symposium was a satellite session to that meeting. Professor Brunetto Chiarelli, of the Istituto di Antropologia at the University of Florence, was the program chairman for the Congress. The general theme of the Congress was “Biodemography and Human Evolution,” and the G6PD symposium was consistent with this topic. In its broadest sense the symposium focused on biocultural factors which have influenced evolution at the G6PD locus and the pattern of population variation that has consequently emerged in this genetic system. A more specific sub-theme, reflected in the title of the symposium, was the interaction between dietary factors and the G6PD locus in providing antimalarial protection to human populations.  相似文献   

14.
15.
16.
A polymorphic site exists in exon 11 of G6PD: in the wild-type enzyme, nucleotide (NT) 1311 is a C, but is some individuals from diverse populations a T is present instead. Nine of 54 X chromosomes from Europeans of mixed origins, nine of 41 X chromosomes of Ashkenazi Jewish subjects, three of 18 X chromosomes of Sicilians, five of 20 African X chromosomes, and nine of 20 Asian Indian X chromosomes had the mutant genotype. In contrast, the mutation was found in only three of 59 Oriental X chromosomes and in three of 30 Central/South American X chromosomes. The mutation was absent from four samples of chimpanzee DNA. Twenty-one of 22 male subjects from Mediterranean countries who had the G6PD Mediterranean 563T genotype investigated in the present study or reported previously had a T at NT 1311. Only one had the normal C at NT 1311. In contrast, both G6PD Mediterranean563T males from the Indian subcontinent had the normal C at NT 1311. These findings suggest that the same mutation at nucleotide 563 giving rise to G6PD Mediterranean may have arisen independently in Europe and in Asia.  相似文献   

17.
18.
Summary The incidence of G6PD deficiency among 338 Thai males with senile cataracts was 5.92% while 446 control Thai males gave an incidence of 6.95%. The figures in females were 16.29% and 14% among 201 senile cataracts females and 200 control females respectively. The age of onset of senile cataracts was not different between the G6PD deficient and G6PD normal groups. The findings indicate that, at least in Thailand, G6PD deficiency in general is not a factor in cataractogenesis.  相似文献   

19.
Two new variants of erythrocyte glucose 6-phosphate dehydrogenase are discovered in 3 unrelated Ashkenazi Jew patients with severe deficiency of enzyme. Both variants have a resemblance to 2 other variants in Ashkenazi: G6PD Boston and G6PD Kilgore, but have a significantly higher affinity for substrates and their analogues and are not associated with chronic hemolytic disease. Probably, all 4 variants arise from two ancestral mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号