共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mutation analysis of glucose-6-phosphate dehydrogenase (G6PD) variants in Costa Rica 总被引:1,自引:0,他引:1
Summary Glucose-6-phosphate dehydrogenase (G6PD) deficiency has previously been reported among both the black and white populations of Costa Rica. All 28 G6PD A — samples were found to be of the common G6PD A-376G/202Atype. A previously described mutation associated with nonspherocytic hemolytic anemia, G6PD Puerto Limón, was found to be due to a GA transition at nucleotide (nt) 1192, causing a glulys substitution. Mutations in this region of the G6PD molecule seem invariably to be associated with chronic hemolytic anemia. G6PD Santamaria had been described previously in two unrelated white subjects. We found that both did, indeed, have the same mutations. In this variant the AG substitution at nt 376 that is characteristic of G6PD A was present, but an AT mutation at nt 542, apparently superimposed on the ancient G6PD A mutation, resulted in an aspval substitution. Thus, the gain of a negative charge at amino acid 126 was counterbalanced by the loss of a charge at amino acid 181, giving rise to a variant with the G6PD A mutation but with normal electrophoretic mobility. 相似文献
4.
Maria Domenica Cappellini Franco Martinez di Montemuros Chiara Dotti Dario Tavazzi Gemino Fiorelli 《Human genetics》1995,95(4):440-442
During the last ten years, molecular biological techniques such as cloning and sequencing and, more recently, polymerase chain reaction (PCR) amplification have led to the identification of the molecular defects responsible for more than fifty glucose-6-phosphate dehydrogenase (G6PD) variants. In this paper, we report the identification of the molecular abnormality underlying the G6PD Ferrara II variant, present in the Po delta area of Northern Italy. Biochemical characterisation shows an enzymatic activity of about 15% of normal (WHO class III), slow electrophoretic mobility, low Km for G6P, high percentage substrate analogue utilisation and a biphasic pH optimum curve. After PCR amplification, non-radioiso-topic single-strand conformation polymorphism analysis carried out for the entire coding region has revealed a mobility shift in exon 8. Nucleotide sequencing has demonstrated a missense 844 G>C mutation, causing an Asp>His amino-acid replacement, known as being responsible for G6PD Seattle, G6PD Modena and G6PD Lodi. 相似文献
5.
6.
Erythrocyte samples from 101 individuals, originally from Punjab and living at the time of investigation in England, were screened for glucose-6-phosphate dehydrogenase (G6PD) variants by Beutler’s fluorescent spot test and standard cellulose acetate gel (Cellogel) electrophoresis. All but 2 of the 40 males in the study were found to be indistinguishable from normal G6PD B. One of the variants had 2% of the normal activity and resembled G6PD Mediterranean in electrophoretic behaviour. The other variant showed 52% of the normal activity and migrated slower than G6PD B in Cellogel with about half of the normal band intensity. A set of physicochemical characteristics of the variant determined by conventional methods distinguished it from the variants reported so far. It was designated as G6PD Punjab, and the corresponding allele asG6PD PUN. The most striking feature of G6PD Punjab is a remarkable alteration in its electrophoretic behaviour after dialysis. 相似文献
7.
8.
9.
10.
11.
12.
Summary Glucose-6-phosphate dehydrogenase (G6PD) deficiency appears to be fairly common in Mexico. We have now examined the DNA of three previously reported electrophoretically fast Mexican G6PD variants, — G6PD Distrito Federal, G6PD Tepic, and G6PD Castilla. All three of these variants, believed on the basis of biochemical characterization and population origin to be unique, have the GA transition at nucleotide 202 and the AG transition at nucleotide 376, mutations that we now recognize to be characteristic of G6PD A —. Two other Mexican males with G6PD deficiency were found to have the same mutation. All five have the (NlaIII/ FokI/PvuII/PstI) haplotype characteristic of G6PD A in Africa. Since the PvuII+ genotype seems to be rare in Europe, we conclude that all of these G6PD A-genes had their ancient origin in Africa, although in many of the Mexican patients with G6PD A –202A/376G the gene may have been imported more recently from Spain, where this variant, formerly known as G6PD Betica, is also prevalent. 相似文献
13.
Summary A new G6PD variant, called G6PD Vientiane, has been discovered in a patient from Laos.The characteristics of this variant are: mild enzyme deficiency (about 50% of the normal activity) in the granulocytes and the red cells, with normal G6PD-related antigen concentration; increased stability; normal Km glucose 6-phosphate and NADP+; increased inhibition constant by NADPH; decreased inhibition by ATP; slightly increased utilization of the substrate analogue; abnormal pH curve, with maximum activity at pH 9.5; slightly reduced starch gel electrophoretic migration. The implications of the molecular stability of a deficient mutant variant are discussed. 相似文献
14.
Molecular genetics of the glucose-6-phosphate dehydrogenase (G6PD) Mediterranean variant and description of a new G6PD mutant, G6PD Andalus1361A
下载免费PDF全文

J L Vives-Corrons W Kuhl M A Pujades E Beutler 《American journal of human genetics》1990,47(3):575-579
Glucose-6-phosphate dehydrogenase (G6PD; E.C.1.1.1.49) deficiency is the most common human enzymopathy; more than 300 different biochemical variants of the enzyme have been described. In many parts of the world the Mediterranean type of G6PD deficiency is prevalent. However, G6PD Mediterranean has come to be regarded as a generic term applied to similar G6PD mutations thought, however, to represent a somewhat heterogeneous group. A C----T mutation at nucleotide 563 of G6PD Mediterranean has been identified by Vulliamy et al., and the same mutation has been found by De Vita et al. in G6PD Mediterranean, G6PD Sassari, and G6PD Cagliari. The latter subjects had an additional mutation, at nucleotide 1311, that did not produce a coding change. We have examined genomic DNA of five patients--four of Spanish origin and one of Jewish origin--having enzymatically documented G6PD Mediterranean. All had both the mutation at nucleotide 563 and that at nucleotide 1311. A sixth sample, resembling G6PD Mediterranean kinetically but with a slightly rapid electrophoretic mobility, was designated G6PD Andalus and was found to have a different mutation, a G----A transition at nucleotide 1361, producing an arginine-to-histidine substitution. These studies suggest that G6PD Mediterranean is, after all, relatively homogeneous. 相似文献
15.
Summary Characterization of partially purified eryrhrocyte G-6-PD from 50 enzymedeficient males in 45 unrelated Thai families revealed 6 enzyme variants. Thirty-five subjects in 31 families had G-6-PD variant with normal electrophoretic mobility, slightly low Km G-6-P, normal substrate-analog utilization, normal pH-optimum curve, and slightly increased heat stability. This enzyme variant is called G-6-PD Mahidol.Six subjects had enzyme with fast electrophoretic mobility (106–108% of normal), low Km G-6-P, slightly increased substrate-analog utilization, biphasic pH-optimum curve, and slightly low to normal heat stability. This variant was identical to G-6-PD Canton.Five subjects had G-6-PD with fast electrophoretic mobility (103–106% of normal), low Km G-6-P, very high substrate-analog utilization except for DPN which it did not use as cofactor, markedly biphasic pH-optimum curve and very low heat stability. This variant is called G-6-PD Union (Thai).Two brothers had G-6-PD with normal electrophoretic mobility, low Km G-6-P, slightly increased substrate-analog utilization, biphasic pH-optimum curve and low heat stability. This variant is designated G-6-PD Siriraj.G-6-PD from one patient had slightly fast electrophoretic mobility, increased substrateanalog utilization, especially of DPN, and very low thermal stability. It is called G-6-PD Kan.One subject had G-6-PD with normal electrophoretic mobility, Km G-6-P, pH-optimum curve and heat stability, and increased substrate-analog utilization. This G-6-PD variant is named G-6-PD Anant.G-6-PD Mahidol is far more common than any other known variants in Thailand.
This investigation received financial support from the World Health Organization. 相似文献
Zusammenfassung Eine Charakterisierung von teilweise gereinigtem Erythrocyten-G-6-PD von 50 Männern mit Enzym-Defekt aus 45 nicht miteinander verwandten Thai-Familien ergab 6 Enzym-Varianten. 35 Personen in 31 Familien hatten eine G-6-PD-Variante mit normaler elektrophoretischer Wanderungsgeschwindigkeit, einen leicht verminderten G-6-P-Km-Wert, einer normalen Substratanalog-Verwertung, einer normalen pH-Optimum-Kurve und einer leicht erhöhten Hitze-Stabilität. Diese Enzym-Variante wurde G-6-PD Mahidol genannt.Sechs Personen hatten ein Enzym mit rascher elektrophoretischer Wanderung (106–108% der Norm), niedrigem Km für G-6-P, leicht erhöhter Substrat-Verwertung, einer biphasischen pH-Optimum-Kurve und normaler bis leicht erniedrigter Hitzestabilität. Diese Variante ist identisch mit G-6-PD Canton.Fünt Personen hatten G-6-PD mit rascher elektrophoretischer Wanderung (103–106%), niedrigem Km G-6-P, sehr hoher Substratanalog-Verwertung—mit Ausnahme von DPN, das nicht als Cofactor wirkte—, einer stark biphasischen pH-Optimum-Kurve und sehr geringer Hitze-Stabilität. Diese Variante wurde als G-6-PD Union (Thai) bezeichnet.Zwei Brüder hatten ein G-6-PD mit normaler elektrophoretischer Wanderung, niedrigem Km G-6-P, leicht erhöhter Substratanalog-Verwertung, einer biphasischen pH-Optimum-Kurve und geringer Hitze-Stabilität. Diese Variante erhielt den Namen G-6-PD Siriraj.G-6-PD eines Patienten hatte eine leicht erhöhte elektrophoretische Wanderungsgeschwindigkeit, eine erhöhte Substratanalog-Verwertung, besonders für DPN, und eine sehr geringe Hitze-Stabilität (G-6-PD Kan).Eine Person zeigte ein G-6-PD mit normaler elektrophoretischer Wanderungsgeschwindigkeit, Km G-6-P pH-Optimum-Kurve und Hitze-Stabilität. Nur die Substratanalog-Verwertung war erhöht. Diese Variante wurde G-6-PD Anant gennant.G-6-PD Mahidol ist die bei weitem häufigste Variante in Thailand.
This investigation received financial support from the World Health Organization. 相似文献
16.
Meyer T Hölscher C Schwöppe C von Schaewen A 《The Plant journal : for cell and molecular biology》2011,66(5):745-758
Arabidopsis peroxisomes contain an incomplete oxidative pentose-phosphate pathway (OPPP), consisting of 6-phosphogluconolactonase and 6-phosphogluconate dehydrogenase isoforms with peroxisomal targeting signals (PTS). To start the pathway, glucose-6-phosphate dehydrogenase (G6PD) is required; however, G6PD isoforms with obvious C-terminal PTS1 or N-terminal PTS2 motifs are lacking. We used fluorescent reporter fusions to explore possibly hidden peroxisomal targeting information. Among the six Arabidopsis G6PD isoforms only plastid-predicted G6PD1 with free C-terminal end localized to peroxisomes. Detailed analyses identified SKY as an internal PTS1-like signal; however, in a medial G6PD1 reporter fusion with free N- and C-terminal ends this cryptic information was overruled by the transit peptide. Yeast two-hybrid analyses revealed selective protein-protein interactions of G6PD1 with catalytically inactive G6PD4, and of both G6PD isoforms with plastid-destined thioredoxin m2 (Trx(m2) ). Serine replacement of redox-sensitive cysteines conserved in G6PD4 abolished the G6PD4-G6PD1 interaction, albeit analogous changes in G6PD1 did not. In planta bimolecular fluorescence complementation (BiFC) demonstrated that the G6PD4-G6PD1 interaction results in peroxisomal import. BiFC also confirmed the interaction of Trx(m2) with G6PD4 (or G6PD1) in plastids, but co-expression analyses revealed Trx(m2) -mediated retention of medial G6PD4 (but not G6PD1) reporter fusions in the cytosol that was stabilized by CxxC113S exchange in Trx(m2) . Based on preliminary findings with plastid-predicted rice G6PD isoforms, we dismiss Arabidopsis G6PD4 as non-functional. G6PD4 orthologs (new P0 class) apparently evolved to become cytosolic redox switches that confer thioredoxin-relayed alternative targeting to peroxisomes. 相似文献
17.
Origin of "fused" glucose-6-phosphate dehydrogenase. 总被引:2,自引:0,他引:2
18.
Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 相似文献
19.
Summary We describe a previously unreported glucose-6-phosphate dehydrogenase (G6PD) variant. G6PD Huntsville was found in a Caucasian male, resident of Huntsville, Alabama who was investigated for otherwise unexplained chronic hemolytic anemia. An unusual feature of this unique, apparently hemolytic, G6PD mutant is that its red cell enzymatic activity has not been decreased. The mutant enzyme is unstable. Additionally, the enzyme variant is characterized by normal electrophoretic mobility, biphasic and slightly alkaline pH optimum, and abnormal kinetics for the natural substrates G6PD and NADP as well as the artificial substrates deamino NADP. Its activity for another artificial substrate 2-deoxy G6PD is normal. The inhibition constant for NADPH is normal. The subject has had no evidence of episodic jaundice. 相似文献
20.
Yi-Hsuan Wu Mei-Ling Cheng Hung-Yao Ho Daniel Tsun-Yee Chiu Tzu-Chien V Wang 《Journal of biomedical science》2009,16(1):18
Fibroblasts derived from glucose-6-phosphate dehydrogenase (G6PD)-deficient patients display retarded growth and accelerated
cellular senescence that is attributable to increased accumulation of oxidative DNA damage and increased sensitivity to oxidant-induced
senescence, but not to accelerated telomere attrition. Here, we show that ectopic expression of hTERT stimulates telomerase
activity and prevents accelerated senescence in G6PD-deficient cells. Stable clones derived from hTERT-expressing normal and
G6PD-deficient fibroblasts have normal karyotypes, and display no sign of senescence beyond 145 and 105 passages, respectively.
Activation of telomerase, however, does not prevent telomere attrition in earlier-passage cells, but does stabilize telomere
lengths at later passages. In addition, we provide evidence that ectopic expression of hTERT attenuates the increased sensitivity
of G6PD-deficient fibroblasts to oxidant-induced senescence. These results suggest that ectopic expression of hTERT, in addition
to acting in telomere length maintenance by activating telomerase, also functions in regulating senescence induction. 相似文献