首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of dendritic spines with specific geometry and membrane composition is critical for proper synaptic function. Specific spine membrane architecture, sub-spine microdomains and spine head and neck geometry allow for well-coordinated and compartmentalized signaling, disruption of which could lead to various neurological diseases. Research from neuronal cell culture, brain slices and direct in vivo imaging indicates that dendritic spine development is a dynamic process which includes transition from small dendritic filopodia through a series of structural refinements to elaborate spines of various morphologies. Despite intensive research, the precise coordination of this morphological transition, the changes in molecular composition, and the relation of spines of various morphologies to function remain a central enigma in the development of functional neuronal circuits. Here, we review research so far and aim to provide insight into the key events that drive structural change during transition from immature filopodia to fully functional spines and the relevance of spine geometry to function.  相似文献   

2.
Autophagy is an evolutionarily conserved machinery for bulk degradation of cytoplasmic components. Here, we report upregulation of autophagosome formation in pancreatic beta cells in diabetic db/db and in nondiabetic high-fat-fed C57BL/6 mice. Free fatty acids (FFAs), which can cause peripheral insulin resistance associated with diabetes, induced autophagy in beta cells. Genetic ablation of atg7 in beta cells resulted in degeneration of islets and impaired glucose tolerance with reduced insulin secretion. While high-fat diet stimulated beta cell autophagy in control mice, it induced profound deterioration of glucose tolerance in autophagy-deficient mutants, partly because of the lack of compensatory increase in beta cell mass. These findings suggest that basal autophagy is important for maintenance of normal islet architecture and function. The results also identified a unique role for inductive autophagy as an adaptive response of beta cells in the presence of insulin resistance induced by high-fat diet.  相似文献   

3.
4.
5.
6.
7.
Anticipatory (APAs) and compensatory (CPAs) postural adjustments are the two principal mechanisms that the central nervous system uses to maintain equilibrium while standing. We studied the role of APAs in compensatory postural adjustments. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level, while standing with eyes open and closed. Electrical activity of leg and trunk muscles was recorded and analyzed during four epochs representing the time duration typical for anticipatory and compensatory postural control. No anticipatory activity of the trunk and leg muscles was seen in the case of unpredictable perturbations; instead, significant compensatory activation of muscles was observed. When the perturbations were predictable, strong anticipatory activation was seen in all the muscles: such APAs were associated with significantly smaller compensatory activity of muscles and COP displacements after the perturbations.The outcome of the study highlights the importance of APAs in control of posture and points out the existence of a relationship between the anticipatory and the compensatory components of postural control. It also suggests a possibility to enhance balance control by improving the APAs responses during external perturbations.  相似文献   

8.
The central nervous system (CNS) utilizes anticipatory (APAs) and compensatory (CPAs) postural adjustments to maintain equilibrium while standing. It is known that these postural adjustments involve displacements of the center of mass (COM) and center of pressure (COP). The purpose of the study was to investigate the relationship between APAs and CPAs from a kinetic and kinematic perspective. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level while standing. Kinematic and kinetic data were recorded and analyzed during the time duration typical for anticipatory and compensatory postural adjustments. When the perturbations were unpredictable, the COM and COP displacements were larger compared to predictable conditions with APAs. Thus, the peak of COM displacement, after the pendulum impact, in the posterior direction reached 28 ± 9.6 mm in the unpredictable conditions with no APAs whereas it was 1.6 times smaller, reaching 17 ± 5.5 mm during predictable perturbations. Similarly, after the impact, the peak of COP displacement in the posterior direction was 60 ± 14 mm for unpredictable conditions and 28 ± 3.6 mm for predictable conditions. Finally, the times of the peak COM and COP displacements were similar in the predictable and unpredictable conditions. This outcome provides additional knowledge about how body balance is controlled in presence and in absence of information about the forthcoming perturbation. Moreover, it suggests that control of posture could be enhanced by better utilization of APAs and such an approach could be considered as a valuable modality in the rehabilitation of individuals with balance impairment.  相似文献   

9.
Rall's neuron model is extended by including a non-uniform time constant together with synaptic input modeled as a square step of conductance. An analytic solution (in series form) for the electrotonic potential is obtained. The major conclusion reached is that a lower somatic time constant attenuates the amplitude of the potential at the soma, brought about by the activation of a synapse located at the distal end of the dendritic cable in an initially polarized neuron.  相似文献   

10.
Respiratory afferent stimulation can elicit increases in respiratory motor output that outlast the period of stimulation by seconds to minutes [short-term potentiation (STP)]. This study examined the potential contribution of spinal mechanisms to STP in anesthetized, vagotomized, paralyzed rats. After C(1) spinal cord transection, stimulus trains (100 Hz, 5-60 s) of the C(1)-C(2) lateral funiculus elicited STP of phrenic nerve activity that peaked several seconds poststimulation. Intracellular recording revealed that individual phrenic motoneurons exhibited one of three different responses to stimulation: 1) depolarization that peaked several seconds poststimulation, 2) depolarization during stimulation and then exponential repolarization after stimulation, and 3) bistable behavior in which motoneurons depolarized to a new, relatively stable level that was maintained after stimulus termination. During the STP, excitatory postsynaptic potentials elicited by single-stimulus pulses were larger and longer. In conclusion, repetitive activation of the descending inputs to phrenic motoneurons causes a short-lasting depolarization of phrenic motoneurons, and augmentation of excitatory postsynaptic potentials, consistent with a contribution to STP.  相似文献   

11.
《Journal of Physiology》1996,90(3-4):229-232
Changing the reliability of neurotransmitter release results in a change in the efficay of low frequency synaptic transmission and in the rate of high frequency synaptic depression thus it can not cause an uniform change in strength of synapses and instead results in a change in the dynamics of synaptic transmission referred to as ‘redistribution of synaptic efficacy’ (RSE). Since the change in synaptic transmission associated with RSE depends on the history of action potential activity it is concluded that RSE serves as a mechanism to generate a potentially infinite diversity of synaptic input.  相似文献   

12.
Mitochondria have a number of essential roles in neuronal function. Their complex mobility patterns within neurons are characterized by frequent changes in direction. Mobile mitochondria can become stationary or pause in regions that have a high metabolic demand and can move again rapidly in response to physiological changes. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Research into the mechanisms that regulate mitochondrial transport is thus an important emerging frontier.  相似文献   

13.
In sheep, the control of tonic and surge GnRH secretion is sexually differentiated by testosterone in utero. However, GnRH neurons are not sexually dimorphic with respect to number, distribution, or gross morphology. Therefore, this study tested the hypothesis that prenatal steroids influence synaptic input to GnRH neurons. We compared the number of synapses on GnRH neurons from male, female, and androgenized female lambs (n = 5 each). Androgenized females were exposed to testosterone during mid-gestation. Yearling lambs were perfused, and GnRH neurons were visualized using the LR-1 antibody. Five to seven GnRH neurons from the rostral preoptic area in each animal were viewed at the ultrastructural level. Afferent synapses and glial ensheathment on each neuron were counted in a single section through the plane of the nucleus. GnRH neurons from females received approximately twice as many contacts (3.6 +/- 0.7 synapses/100 microm plasma membrane) as those from male lambs (1.6 +/- 0.3; p < 0.05), similar to previous reports in rats. In addition, the number of synapses on GnRH neurons from androgenized female lambs (1.5 +/- 0.5) was similar to that from male lambs, suggesting that prenatal steroids give rise to sex differences in synaptic input to GnRH neurons.  相似文献   

14.
In the cortex, synaptic latencies display small variations ( approximately 1-2 ms) that are generally considered to be negligible. We show here that the synaptic latency at monosynaptically connected pairs of L5 and CA3 pyramidal neurons is determined by the presynaptic release probability (Pr): synaptic latency being inversely correlated with the amplitude of the postsynaptic current and sensitive to manipulations of Pr. Changes in synaptic latency were also observed when Pr was physiologically regulated in short- and long-term synaptic plasticity. Paired-pulse depression and facilitation were respectively associated with increased and decreased synaptic latencies. Similarly, latencies were prolonged following induction of presynaptic LTD and reduced after LTP induction. We show using the dynamic-clamp technique that the observed covariation in latency and synaptic strength is a synergistic combination that significantly affects postsynaptic spiking. In conclusion, amplitude-related variation in latency represents a putative code for short- and long-term synaptic dynamics in cortical networks.  相似文献   

15.
The relationship between adhesive interactions across the synaptic cleft and synaptic function has remained elusive. At certain CNS synapses, pre- to postsynaptic adhesion is mediated at least in part by neural (N-) cadherin. Here, we demonstrate that upon depolarization of hippocampal neurons in culture by K+ treatment, or application of NMDA or alpha-latrotoxin, synaptic N-cadherin dimerizes and becomes markedly protease resistant. These properties are indices of strong, stable, enhanced cadherin-mediated intercellular adhesion. N-cadherin retained protease resistance for at least 2 hr after recovery, while other surface molecules, including other cadherins, were completely degraded. The acquisition of protease resistance and dimerization of N-cadherin is not dependent on new protein synthesis, nor is it accompanied by internalization of N-cadherin. By immunocytochemistry, we found that high K+ selectively induces surface dispersion of N-cadherin, which, after recovery, returns to synaptic puncta. N-cadherin dispersion under K+ treatment parallels the rapid expansion of the presynaptic membrane consequent to the massive vesicle fusion that occurs with this type of depolarization. In contrast, with NMDA application, N-cadherin does not disperse but does acquire enhanced protease resistance and dimerizes. Our data strongly suggest that synaptic adhesion is dynamically and locally controlled, and modulated by synaptic activity.  相似文献   

16.
The release of vasopressin and oxytocin from the supraoptic nucleus (SON) neurons is tonically regulated by excitatory glutamatergic and inhibitory GABAergic synaptic inputs. Acetylcholine is known to excite SON neurons and to elicit vasopressin release. Cholinergic receptors are located pre- and postsynaptically in the SON, but their functional significance in the regulation of SON neurons is not fully understood. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the excitatory glutamatergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slices were identified microscopically, and the spontaneous miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole cell voltage-clamp technique. The mEPSCs were abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). Acetylcholine (100 microM) significantly increased the frequency of mEPSCs of 38 SON neurons from 1.87 +/- 0.36 to 3.42 +/- 0.54 Hz but did not alter the amplitude (from 19.61 +/- 0.90 to 19.34 +/- 0.84 pA) and the decay time constant of mEPSCs. Furthermore, the nicotinic receptor antagonist mecamylamine (10 microM, n = 16), but not the muscarinic receptor antagonist atropine (100 microM, n = 12), abolished the excitatory effect of acetylcholine on the frequency of mEPSCs. These data provide new information that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by its effect on presynaptic glutamate release. Activation of presynaptic nicotinic, but not muscarinic, receptors located in the glutamatergic terminals increases the excitatory synaptic input to the SON neurons of the hypothalamus.  相似文献   

17.
The mathematical model of the spike activity of a neuron with synaptic input from many other neurons [1], describes adequately the firing of 5 from 7 neurons in the tegmentum of mesencephalic cat and changes of their activity evoked by glutamate iontophoresis. For these 5 neurons the estimates of the PSPs' average frequency of the threshold depolarization and of the constant decay of the EPSP were received. For different neurons the values of these parameters are 4--100 KHz, 100--800 average unitary EPSPs and 4--30 msec correspondingly. The stationary value of the average membrane potential (SVAMP) in all 5 neurons was removed significantly from the resting potential toward the threshold potential. SWAMP could be changed by the glutamate iontophoresis in such a degree to overlap the threshold potential.  相似文献   

18.
Muscle sensory neurons, called Ia afferents, make monosynaptic connections with functionally related sets of motoneurons in the spinal cord. Previous work has suggested that peripheral target muscles play a major role in determining the central connections of Ia afferents with motoneurons. Here, we ask whether motoneurons can also be influenced by their target muscles in terms of the monosynaptic input they receive from Ia afferents, by transplanting thoracic motoneurons into the lumbosacral spinal cord so that they innervate foreign muscles. Three or four segments of thoracic neural tube from stage 14-15 chicken embryos were transplanted to the lumbosacral region of stage 16-17 embryos, and electrophysiological recordings were made from transplanted motoneurons after the embryos had reached stage 38-40. Transplanted thoracic motoneurons innervated limb muscles and received monosynaptic inputs from Ia afferents. These connections were not random: Most of the connections were formed between Ia afferents and motoneurons projecting to the same muscle (homonymous connections). Few aberrant connections were found although the anatomical distribution of afferents in the transplant indicated that they had ample opportunity to contact inappropriate motoneurons. We conclude that although peripheral target cues are not sufficient to respecify an already committed motoneuron (turn a thoracic motoneuron into a lumbosacral motoneuron), they do provide sufficient information for Ia afferent input to be functionally correct.  相似文献   

19.
The microtubule-associated protein tau accumulates in Alzheimer's and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring. Mutagenesis of 14 disease-associated serine and threonine amino acid residues to create pseudohyperphosphorylated tau caused tau mislocalization while creation of phosphorylation-deficient tau blocked the mistargeting of tau to dendritic spines. Thus, tau phosphorylation plays a critical role in mediating tau mislocalization and subsequent synaptic impairment. These data establish that the locus of early synaptic malfunction caused by tau resides in dendritic spines.  相似文献   

20.
 The present study was undertaken to determine the haematological and cardiovascular status, at rest and during prolonged (1 h) submaximal exercise (approximately 70% of peak oxygen uptake) in a group (n = 12) of chronic coca users after chewing approximately 50 g of coca leaves. The results were compared to those obtained in a group (n = 12) of nonchewers. At rest, coca chewing was accompanied by a significant increase in heart rate [from 60 (SEM 4) TO 76 (SEM 3) beats · min−1], in haematocrit [from 53.2 (SEM 1.2) to 55.6 (SEM 1.1)%] in haemoglobin concentration, and plasma noradrenaline concentration [from 2.8 (SEM 0.4) to 5.0 (SEM 0.5) μmol · l−1]. It was calculated that coca chewing for 1 h resulted in a significant decrease in blood [−4.3 (SEM 2.2)%] and plasma [−8.7 (SEM 1.2)%] volume. During submaximal exercise, coca chewers displayed a significantly higher heart rate and mean arterial blood pressure. The exercise-induced haemoconcentration was blunted in coca chewers compared to nonchewers. It was concluded that the coca-induced fluid shift observed at rest in these coca chewers was not cumulative with that of exercise, and that the hypovolaemia induced by coca chewing at rest compromised circulatory adjustments during exercise. Accepted: 29 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号