首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate dipeptide assimilation by the liver, a series of interrelated experiments were performed in rats. Partial hepatectomy prolonged the plasma half-life (min) of Gly-Ala (3.42 +/- 0.22 versus 4.90 +/- 0.35, p less than 0.05) but had no significant effect on plasma half-life of Gly-Leu, Gly-Pro, or Gly-Sar. We then investigated the rate of disappearance (mumol X (g liver X h)-1) of the above four dipeptides (initial concentration = 1 mM) from the medium during isolated liver perfusion. The order of dipeptide disappearance was: Gly-Leu (8.75 +/- 0.65) greater than Gly-Ala (3.36 +/- 0.46) greater than Gly-Pro (1.29 +/- 0.54) greater than Gly-Sar (0.35 +/- 0.12). This order of dipeptide disappearance corresponded exactly to the order of the rates of glycine accumulation in the medium during liver perfusion with the four dipeptides. Addition of glucagon had no effect on the disappearance rate of Gly-Ala from the medium, but reduced accumulation rates of glycine (3.39 +/- 0.30 versus 1.42 +/- 30, p less than 0.01) and alanine (4.42 +/- 0.66 versus 1.35 +/- 0.39, p less than 0.01). Finally, we found that hydrolysis by the liver plasma membranes and/or perfusion medium accounted for disappearance of dipeptides. In conclusion, the liver does not appear to have a transport system for dipeptides, but assimilates dipeptides by extracellular hydrolysis. Hydrolysis is achieved by enzymes either located on the plasma membranes or released from the cytosol. The amino acid residues released as the result of dipeptide hydrolysis are then taken up by the liver.  相似文献   

2.
Cai H  Hauser M  Naider F  Becker JM 《Eukaryotic cell》2007,6(10):1805-1813
Dal5p has been shown previously to act as an allantoate/ureidosuccinate permease and to play a role in the utilization of certain dipeptides as a nitrogen source in Saccharomyces cerevisiae. Here, we provide direct evidence that dipeptides are transported by Dal5p, although the affinity of Dal5p for allantoate and ureidosuccinate is higher than that for dipeptides. Allantoate, ureidosuccinate, and to a lesser extent allantoin competed with dipeptide transport by reducing the toxicity of the peptide Ala-Eth and decreasing the accumulation of [(14)C]Gly-Leu. In contrast to the well-studied di/tripeptide transporter Ptr2p, whose substrate specificity is very broad, Dal5p preferred to transport non-N-end rule dipeptides. S. cerevisiae W303 was sensitive to the toxic peptide Ala-Eth (non-N-end rule peptide) but not Leu-Eth (N-end rule peptide). Non-N-end rule dipeptides showed better competition with the uptake of [(14)C]Gly-Leu than N-end rule dipeptides. Similar to the regulation of PTR2, DAL5 expression was influenced by the addition of Leu and by the CUP9 gene. However, DAL5 expression was downregulated in the presence of leucine and the absence of CUP9, whereas PTR2 was upregulated. Toxic dipeptide and uptake assays indicated that either Ptr2p or Dal5p was predominantly used for dipeptide transport in the common laboratory strains S288c and W303, respectively. These studies highlight the complementary activities of two dipeptide transport systems under different regulatory controls in common laboratory yeast strains, suggesting that dipeptide transport pathways evolved to respond to different environmental conditions.  相似文献   

3.
Peptide utilization by group N streptococci.   总被引:3,自引:0,他引:3  
The rate of glycylleucine uptake by Group N streptococci varied widely. One strain of Streptococcus cremoris did not transport the dipeptide or utilize tripeptides. In peptide-utilizing strains, amino acid, dipeptide and tripeptide transport were distinct, although dipeptides inhibited tripeptide utilization. Specificity determinants for peptide transport and utilization were similar to those reported in Gram-negative bacteria. Peptide utilization in S. lactis was not completely dependent on the transport of intact peptides.  相似文献   

4.
5.
Active transport of dipeptides in rabbit renal brush-border membrane vesicles is energized by an inward-directed H+ gradient rather than a Na+ gradient. We examined the effects of treatment of membrane vesicles with diethylpyrocarbonate (DEP), a reagent specific for histidyl groups, on this H+ gradient-dependent dipeptide uptake. DEP inhibited the uptake of all three dipeptides studied, Gly-sarcosine, Gly-Gly, and Gly-Pro (Ki = 0.6-0.9 mM), and the inhibition was noncompetitive. The dipeptide transporter could be protected from DEP inhibition by the presence of dipeptide substrates during the treatment of the vesicles with the inhibitor, whereas leucine plus Na+ failed to offer the protection. Na+-dependent leucine uptake was also inhibited by DEP (Ki = 2.5 mM) and the amino acid transporter could be protected from the inhibition by leucine plus Na+, but not by dipeptides. Treatment of membrane vesicles with the thiol group-specific reagents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole,3-bromopyruvate, p-chloromercuribenzenesulfonic acid, and N-ethylmaleimide, also inhibited the H+ gradient-dependent dipeptide uptake. The potency of their inhibition was in the order: 7-chloro-4-nitrobenz-2-oxa-1,3-diazol greater than p-chloromercuribenzenesulfonic acid greater than 3-bromopyruvate greater than N-ethylmaleimide. The inhibition could be reversed in some cases by treatment of the membrane vesicles with reducing agents such as 2,3-dimercaptopropanol following incubation with the inhibitors. Dipeptide substrates could protect the dipeptide transporter from the inhibition. We conclude that histidyl and thiol groups are present at or near the substrate-binding site of the rabbit renal dipeptide transporter.  相似文献   

6.
Bacterial dipeptide ABC transporters function to import a wide range of dipeptide substrates. This ability to transport a wide variety of dipeptides is conferred by the cognate substrate binding protein (SBP) of these transporters. SBPs bind dipeptides with little regard for their amino acid content. Here, we report the 1.7 A resolution structure of lipoprotein-9 (SA0422) of Staphylococcus aureus in complex with the dipeptide glycylmethionine. Experimental characterization of the subcellular location of the protein confirmed that SA0422 is an acylated, peripheral membrane protein. This is the first structure determined for an SBP of a Gram-positive dipeptide ABC transporter. Usually, binding of dipeptides occurs in a binding pocket that is largely hydrated and able to accommodate the side chains of several different amino acid residues. Unlike any other known SBP, lipoprotein-9 binds the side chains of the glycylmethionine dipeptide through very specific interactions. Lipoprotein-9 shares significant structural and sequence homology with the MetQ family of methionine SBP. Sequence comparisons between MetQ-like proteins and lipoprotein-9 suggest that the residues forming the tight interactions with the methionine side chains of the ligand are highly conserved between lipoprotein-9 and MetQ homologues, while the residues involved in coordinating the glycine residue are not. Modeling of the Vibrio cholerae MetQ and lipoprotein-9 binding pockets can account for lipoprotein-9 substrate specificity toward glycylmethionine. For this reason, we have designated lipoprotein-9 GmpC, for glycylmethionine binding protein.  相似文献   

7.
The transport of [14C]Gly-Pro was examined using a mutant of Salmonella typhimurium (strain TN87) deficient in an X-Pro dipeptidase and an X-Pro-Y iminopeptidase. The dipeptide was taken up by one saturable transport system having a Km of 5.3-10(-7)M and a V of 1.4 nmol/mg dry wt cell per min. The uptake of Gly-Pro was not inhibited by amino acids or tripeptides and the transport system exhibited a rather broad side chain specificity for dipeptides. Dipeptides containing hydrophobic residues were the most potent inhibitors of this dipeptide transport system exhibiting Ki values between 10(-8) and 10(-7) M. In contrast, dipeptides containing glycine residues were particularly weak inhibitors. Finally, Gly-Pro was found to be in the intact form inside the cell and was concentrated more than 1000-fold.  相似文献   

8.
Efficient transport of intact drug (solute) across the intestinal epithelium is typically a requirement for good oral activity. In general, the membrane permeability of a solute is a complex function of its size, lipophilicity, hydrogen bond potential, charge, and conformation. In conjunction with theoretical/computational and in vitro drug transport studies, seven dipeptide (R(1)-D-Xaa-D-Phe-NHMe) homologues were each dissolved in a micellar d(38)-dodecylphosphocholine solvent system. In this homologous dipeptide series, factors such as size, lipophilicity, hydrogen-bond potential, and charge were either tightly controlled or well-characterized by other methods in order to investigate by nmr how conformational factors relate to transport. Nuclear Overhauser effect spectroscopy experiments and amide-NH-H(2)O chemical exchange rates showed that the five more lipophilic dipeptides were predominately associated with micelle, whereas the two less lipophilic analogues were not. Rotating frame nuclear Overhauser effect spectroscopy derived interproton distance restraints for each analogue, along with (3)J(HH)-derived dihedral restraints, were used in molecular dynamics/simulated annealing computations. Our results suggest that-other factors being equal-flexible dipeptides having a propensity to fold together nonpolar N- and C-terminal moieties allow greater segregation of polar and nonpolar domains and may possess enhanced transport characteristics. Dipeptides that were less flexible or that retained a less amphiphilic conformation did not have comparably enhanced transport characteristics. We suggest that these conformational/transport correlations may hold true for small, highly functionalized solutes (drugs) in general.  相似文献   

9.
The yeast Gap1 transceptor mediates amino acid activation of the protein kinase A pathway and undergoes endocytic internalization following amino acid transport. We identified three specific γ-glutamyl dipeptides that cause persistent cyclic AMP-independent activation of protein kinase A, prevent Gap1 vacuolar sorting and cause Gap1 accumulation in endosomes. To our knowledge, these are the first examples of persistent agonists of a transceptor. In yeast mutants blocked in multivesicular body sorting, L-citrulline mimicked persistent signaling, further supporting that the internalized Gap1 transceptor keeps signaling. Unexpectedly, these dipeptides were transported by Gap1 and not by the regular dipeptide transporters. Their uptake was unusually sensitive to external pH and caused transient intracellular acidification. High external pH, NHA1 deletion or V-ATPase inhibition overcame the vacuolar sorting defect. Hence, this work has identified specific dipeptides that cause enhanced proton influx through the Gap1 symporter, resulting in its defective vacuolar sorting, and independently transform it into a persistently signaling transceptor.  相似文献   

10.
The antifungal activity of 5‐hydroxy‐4‐oxo‐l ‐norvaline (HONV), exhibited under conditions mimicking human serum, may be improved upon incorporation of this amino acid into a dipeptide structure. Several HONV‐containing dipeptides inhibited growth of human pathogenic yeasts of the Candida genus in the RPMI‐1640 medium, with minimal inhibitory concentration values in the 32 to 64 μg mL?1 range. This activity was not affected by multidrug resistance that is caused by overexpression of genes encoding drug efflux proteins. The mechanism of antifungal action of HONV dipeptides involved uptake by the oligopeptide transport system, subsequent intracellular cleavage by cytosolic peptidases, and inhibition of homoserine dehydrogenase by the released HONV. The relative transport rates determined the anticandidal activity of HONV dipeptides.  相似文献   

11.
Papain treatment of renal brush border vesicles was carried out as a successful first step towards the purification of the membrane components involved in dipeptide transport. The treated vesicles exhibited increased specific transport activity of glycyl-l-proline. In contrast, the specific transport activity of l-alanine in the treated vesicles was less than that in the control vesicles. Papain treatment resulted in the solubilization of 38% of protein, 55% of alkaline phosphatase, 90% of γ-glutamyltransferase and 95% of leucine aminopeptidase. There was no change in the intravesicular volume nor was there any increase in vesicular permeability. Glycyl-l-proline transport was Na+-independent in the control and papain-treated vesicles. Diamide reduced the Na+-dependent l-alanine transport while glycyl-l-proline transport remained unaffected in the presence of Na+. Many dipeptides inhibited glycyl-l-proline transport both in the presence and absence of Na+. The inhibition by dipeptides was greater than the inhibition by equivalent concentrations of free amino acids. These data demonstrate that renal brush border vesicles can efficiently handle dipeptides by a mechanism completely different from that of amino acid transport.  相似文献   

12.
Synthesis and application of dipeptides; current status and perspectives   总被引:1,自引:0,他引:1  
The functions and applications of l-α-dipeptides (dipeptides) have been poorly studied compared with proteins or amino acids. Only a few dipeptides, such as aspartame (l-aspartyl-l-phenylalanine methyl ester) and l-alanyl-l-glutamine (Ala-Gln), are commercially used. This can be attributed to the lack of an efficient process for dipeptide production though various chemical or chemoenzymatic method have been reported. Recently, however, novel methods have arisen for dipeptide synthesis including a nonribosomal peptide-synthetase-based method and an l-amino acid α-ligase-based method, both of which enable dipeptides to be produced through fermentative processes. Since it has been revealed that some dipeptides have unique physiological functions, the progress in production methods will undoubtedly accelerate the applications of dipeptides in many fields. In this review, the functions and applications of dipeptides, mainly in commercial use, and methods for dipeptide production including already proven processes as well as newly developed ones are summarized. As aspartame and Ala-Gln are produced using different industrial processes, the manufacturing processes of these two dipeptides are compared to clarify the characteristics of each procedure.  相似文献   

13.
Despite research into the nutritional requirements of Helicobacter pylori, little is known regarding its use of complex substrates, such as peptides. Analysis of genome sequences revealed putative ABC-type transporter genes for dipeptide (dppABCDF) and oligopeptide (oppABCD) transport. Genes from each system were PCR amplified, cloned, and disrupted by cassette insertion either individually (dppA, dppB, dppC, oppA, oppB, and oppC) or to create double mutants (dppA oppA, dppB oppB, dppB dppC, and oppB oppC). Peptide-utilizing abilities of the strains were assessed by monitoring growth in a chemically defined medium where the only source of the essential amino acid isoleucine was from peptides of various lengths (two to nine amino acids long). The dipeptide system mutants lacked the ability to use certain dipeptides, hexapeptides, and nonapeptides. However, these mutants retained some ability to grow with other dipeptides, tripeptides, and tetrapeptides. Of the oligopeptide mutants, only the oppB strain differed significantly from the wild type. This strain showed a wild-type phenotype for growth with longer peptides (hexa- and nonapeptides) while having a decreased ability to utilize di-, tri-, and tetrapeptides. The dppA oppA and dppB oppB mutants showed similar phenotypes to those of the dppA and dppB mutants, respectively. Peptide digestion by metalloproteases was ruled out as the cause for residual peptide transport by growing mutant strains in the presence of either EDTA or EGTA. Degradation products associated with a fluorescein isothiocyanate-labeled hexapeptide (plus cells) were minimal. An as yet unidentified peptide transport system(s) in H. pylori is proposed to be responsible for the residual transport.  相似文献   

14.
Pseudomonas putida assimilates peptides and hydrolyses them with intracellular peptidases. Amino acid auxotrophs (his, trp, thr or met) grew on a variety of di- and tripeptides up to twice as slowly as with free amino acids. Pseudomonas putida has separate uptake systems for both dipeptides and oligopeptides (three or more residues). Although the dipeptide system transported a variety of structurally diverse dipeptides it did not transport peptides having either unprotonatable N-terminal amino groups, blocked C-terminal carboxyl groups, D-residues, three or more residues, N-methylated peptide bonds, or beta-amino acids. Oligopeptide uptake lacked amino acid side-chain specificity, required a free N-terminal L-residue and had an upper size limit. Glycylglycyl-D,L-p-fluorophenylalanine inhibited growth of P. putida. Uptake of glycylglycyl[I-14C]alanine was rapid and inhibited by 2,4-dinitrophenol. Both dipeptide and oligopeptide uptake were constitutive. Dipeptides competed with oligopeptides for oligopeptide uptake, but oligopeptides did not compete in the dipeptide system. Final bacterial yields were 5 to 10 times greater when P. putida his was grown on histidyl di- or tripeptides rather than on free histidine because the histidyl residue was protected from catabolism by L-histidine ammonia-lyase. Methionine peptides could satisfy the methionine requirements of P. maltophilia. Generation times on glycylmethionine and glycylmethionylglycine were equal to those obtained with free methionine. Methionylglycylmethionylmethionine gave a generation time twice that of free methionine. Growth of P. maltophilia was inhibited by glycylglycyl-D,L-p-fluorophenylalanine.  相似文献   

15.
In this study, we describe the rational synthesis and functional analysis of novel high affinity inhibitors for the mammalian peptide transporter PEPT2. Moreover, we demonstrate which structural properties convert a transported compound into a non-translocated inhibitor. Starting from Lys[Z(NO(2))]-Pro (where Z is benzyloxycarbonyl), which we recently identified as the first competitive high affinity inhibitor of the intestinal peptide transporter PEPT1, a series of different lysine-containing dipeptide derivatives was synthesized and studied for interaction with PEPT2 based on transport competition assays in Pichia pastoris yeast cells expressing PEPT2 heterologously and in renal SKPT cells expressing PEPT2. In addition, the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT2 was used to determine whether the compounds are transported electrogenically or block the uptake of dipeptides. Synthesis and functional analysis of Lys-Lys derivatives containing benzyloxycarbonyl or 4-nitrobenzyloxycarbonyl side chain protections provided a set of inhibitors that reversibly inhibited the uptake of dipeptides by PEPT2 with K(i) values as low as 10 +/- 1 nm. This is the highest affinity of a ligand of PEPT2 ever reported. Moreover, based on the structure-function relationship, we conclude that the spatial location of the side chain amino protecting group in a dipeptide containing a diaminocarbonic acid and its intramolecular distance from the Calpha atom are key factors for the transformation of a substrate into an inhibitor of PEPT2.  相似文献   

16.
The uptake of a photolabile derivative of the orally effective cephalosporin cephalexin, N-(4-azidobenzoyl)cephalexin, was investigated in brush-border membrane vesicles. The compound was taken up into the intravesicular space and inhibited the active uptake of cephalexin in a concentration-dependent manner. Therefore, this probe interacts with the transport system shared by alpha-aminocephalosporins and dipeptides. Photoaffinity labeling of brush-border membrane vesicles from rat small intestine with N-(4-azido[3,5-3H]benzoyl) derivatives of the cephalosporin cephalexin and the dipeptide glycyl-L-proline resulted in the covalent incorporation of radioactivity into membrane polypeptides with apparent molecular weights of 127,000, 100,000, 94,000 and 86,000, the polypeptide of molecular weight 127,000 being predominantly labeled. The specificity of labeling was demonstrated by a decrease in the labeling of the polypeptide of apparent molecular weight 127,000 in the presence of beta-lactam antibiotics and dipeptides, whereas glucose, taurocholate or amino acids had no effect on the labeling pattern. These data demonstrate an interaction of cephalosporins and dipeptides with a common membrane protein of molecular weight 127,000, which could be a component of the intestinal transport system(s) responsible for the uptake of orally effective cephalosporins and dipeptides.  相似文献   

17.
18.
L-delta-(alpha-Aminoadipoyl)-L-cysteine-D-valine synthetase (ACVS) has been recently studied as a model enzyme for peptide synthetases. It was found that in the absence of alpha-aminoadipic acid but in the presence of several cysteine analogues it was incorporated into several analogue dipeptides upon incubation of the potential cysteine analogues with ACVS. [(14)C]Cysteine was incorporated into the[(14)C]cysteinyl-valine analogue dipeptides. Notably, [(14)C]valine incorporation in the presence of N-acylated cysteine analogues was observed. The alpha-aminoadipic acid activation site is influential, inhibitory or promotive, on the production of these putative dipeptide products. The production of dipeptide analogues, containing valine or analogues at the C-terminus, leads to the speculation that the biosynthetic direction of ACV could be from the C-terminus to the N-terminus.  相似文献   

19.
The manual dansyl-Edman1 degradation procedure is one of the most convenient and widely used techniques for the sequencing of peptides up to about 15 residues in length (1,2). A frequently encountered complication in this procedure is the resistance of certain peptide bonds to acid hydrolysis. If the amino terminal peptide bond of the dansylated peptide is especially resistant, the dansyl dipeptide is frequently in higher yield than the corresponding dansyl amino acid. The resistant dansyl dipeptide is often composed of two hydrophobic amino acid residues. The resistance of such peptide bonds to acid hydrolysis is well understood (3). Other resistant bonds have, however, been noted in practice, e.g., those involving a hydrophobic and a prolyl residue. This phenomenon can lead to difficulty in interpretation of the thin-layer chromatogram and to subsequent incorrect identification of amino acid residues. Extending the hydrolysis time to 24 hr still leaves especially resistant dipeptides as the major product while significantly reducing the yield of other dansylated residues, notably dansyl proline, serine, and threonine. We report here the chromatographic behavior of 18 dansyl dipeptides on polyamide thin-layers using the solvent systems commonly employed in the dansyl-Edman procedure (2). All of these dipeptides have been encountered in practice, and the extent of hydrolysis in 6 n HCl at 110°C is usually less than 20%.  相似文献   

20.
L-Alanyl-L-tyrosine and glycyl-L-phenylalanine labelled with 14C competed with each other and with the dipeptide antibiotic bacilysin for transport into Staphylococcus aureus NCTC 6571 in a medium which did not support growth. They also competed with other dipeptides and several tripeptides. The fast initial transport ofthe two labelled peptides appeared to show Michaelis-Menten kinetics. Neither was transported into a bacilysin-resistant mutant of S. aureus NCTC 6571, although tyrosine was taken up by the mutant as readily as it was by the parent strain. Uptake of alanyltyrosine or glycylphenylalanine was followed by rapid hydrolysis of the peptide and the excretion of tyrosine or phenylalanine. Glycine liberated from glycylphenylalanine was partly degraded and partly incorporated into the bacterial wall. The behaviour of these dipeptides paralleled the inactivation of bacilysin by suspensions of S. aureus and the appearance of its C-terminal amino acid, anticapsin, in the extracellular fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号