首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacities of eurythermal ectotherms to withstand wide ranges of temperature are based, in part, on abilities to modulate gene expression as body temperature changes, notably genes encoding proteins of the cellular stress response. Here, using a complementary DNA microarray, we investigated the sequence in which cellular stress response-linked genes are expressed during acute heat stress, to elucidate how severity of stress affects the categories of genes changing expression. We also studied how prior acclimation history affected gene expression in response to acute heat stress. Eurythermal goby fish (Gillichthys mirabilis) were acclimated to 9 ± 0.5, 19 ± 0.5, and 28 ± 0.5°C for 1 mo. Then fish were given an acute heat ramp (4°C/h), and gill tissues were sampled every +4°C to monitor gene expression. The average onset temperature for a significant change in expression during acute stress increased by ~2°C for each ~10°C increase in acclimation temperature. For some genes, warm acclimation appeared to obviate the need for expression change until the most extreme temperatures were reached. Sequential expression of different categories of genes reflected severity of stress. Regardless of acclimation temperature, the gene encoding heat shock protein 70 (HSP70) was upregulated strongly during mild stress; the gene encoding the proteolytic protein ubiquitin (UBIQ) was upregulated at slightly higher temperatures; and a gene encoding a protein involved in cell cycle arrest and apoptosis, cyclin-dependent kinase inhibitor 1B (CDKN1B), was upregulated only under extreme stress. The tiered, stress level-related expression patterns and the effects of acclimation on induction temperature yield new insights into the fundamental mechanisms of eurythermy.  相似文献   

2.
Ambient temperature is a critical factor that affects biological organisms in many ways. In this study, the authors investigated gene expression changes in rat small intestine in response to heat stress. Male Sprague-Dawley rats were randomly divided into control and heat-stressed groups. Both groups were housed at 25 °C, although the heat-stressed group was also subjected to 40 °C for 2 h each day for 10 successive days. Rats were sacrificed 1, 3, 6, and 10 days after heat treatment, and sections of their small intestine epithelial tissue were excised for morphological examination and microarray analyses. The rat rectal and body surface temperatures and serum cortisol levels were all significantly increased after heat treatment (p < 0.05). The jejuna were significantly damaged by 3 days after heat treatment began. Microarray analysis showed that 422 genes were differentially expressed, of which 290 genes were significantly upregulated and 132 genes were significantly downregulated. Subsequent bioinformatics analyses revealed that the differentially expressed genes were mainly related to stress, immune regulation, and metabolism processes. The bioinformatics analysis of the differentially expressed genes should be beneficial to further investigations on the underlying mechanisms involved in heat stress-induced damage in the small intestine.  相似文献   

3.
Clostridium difficile is a serious nosocomial pathogen whose prevalence worldwide is increasing. Postgenomic technologies can now be deployed to develop understanding of the evolution and diversity of this important human pathogen, yet little is known about the adaptive ability of C. difficile. We used iTRAQ labeling and 2D-LC-MS/MS driven proteomics to investigate the response of C. difficile 630 to a mild, but clinically relevant, heat stress. A statistically validated list of 447 proteins to which functional roles were assigned was generated, allowing reconstruction of central metabolic pathways including glycolysis, γ-aminobutyrate metabolism, and peptidoglycan biosynthesis. Some 49 proteins were significantly modulated under heat stress: classical heat shock proteins including GroEL, GroES, DnaK, Clp proteases, and HtpG were up-regulated in addition to several stress inducible rubrerythrins and proteins associated with protein modification, such as prolyl isomerases and proline racemase. The flagellar filament protein, FliC, was down-regulated, possibly as an energy conservation measure, as was the SecA1 preprotein translocase. The up-regulation of hydrogenases and various oxidoreductases suggests that electron flux across these pools of enzymes changes under heat stress. This work represents the first comparative proteomic analysis of the heat stress response in C. difficile strain 630, complementing the existing proteomics data sets and the single microarray comparative analysis of stress response. Thus we have a benchmark proteome for this pathogen, leading to a deeper understanding of its physiology and metabolism informed by the unique functional and adaptive processes used during a temperature upshift mimicking host pyrexia.  相似文献   

4.
5.
Intertidal zone organisms experience thermal stress during periods of low tide, and much work has shown that induction of heat shock proteins and ubiquitination occurs in response to this stress. However, less is known of other cellular pathways that are regulated following thermal stress in these organisms. Here, we used a functional genomics approach to identify genes that were up- and downregulated following heat stress in the intertidal porcelain crab, Petrolisthes cinctipes using custom cDNA microarrays made from 13,824 cloned P. cinctipes ESTs representing 6717 unique consensus sequences. Statistically significant differences in gene expression between heat stressed and control groups were determined with R/maanova. Genes upregulated following heat stress were involved with protein folding, protein degradation, protein synthesis and gluconeogenesis, suggesting that heat stress accelerated protein turnover. Genes downregulated following heat stress were involved with detoxification, oxygen transport, oxidative phosphorylation, and lipid metabolism, suggesting that the animals were avoiding the generation of reactive oxygen species. ESTs matching hypothetical proteins and ESTs that had no GenBank match were also found to have been both upregulated and downregulated following heat stress, suggesting that novel genes may be involved in the heat stress response.  相似文献   

6.
Six heat shock protein (HSP) genes from five HSP families in the parasitoid, Pteromalus puparum, were evaluated for their response to temperature (-15 ~ 3°C , and 30 ~ 42°C for 1 h), heavy metals (0.5 ~ 5 mM Cd(2+) and Cu(2+) for 24 h and 60 h), and starvation (24 h). Compared with other insect HSPs, all conserved motifs are found in P. puparum HSPs, and they are very similar to those of the recently sequenced ectoparasitoid Nasonia vitripennis. The temporal gene expression patterns indicated that these six HSP genes were all heat-inducible, of which hsp40 was the most inducible. The temperatures for maximal HSP induction at high and low temperature zone were 36 or 39°C and -3°C, respectively. In the hot zone, all HSP genes have the same initial temperature (33°C) for up-regulation. Low concentrations of Cd(2+) for a short-term promoted the expression of all HSP genes, but not high concentrations or long-term treatments. Cu(2+) stress for 24 h increased expression of nearly all HSP. Four HSP genes changed after starvation. We infer that all six HSP genes are sensitive to heat. This may help understand the absence of P. puparum during the summer and winter. The expression profiles of six HSP genes in P. puparum under heavy metal stress indicates that HSP is a short-term response to cellular distress or injury induced by Cd(2+) and Cu(2+).  相似文献   

7.
The availability of full genome sequences has allowed the construction of microarrays, with which screening of the full genome for changes in gene expression is possible. This method can provide a wealth of information about biology at the level of gene expression and is a powerful method to identify genes and pathways involved in various processes. In this study, we report a detailed analysis of the full heat stress response in Drosophila melanogaster females, using whole genome gene expression arrays (Affymetrix Inc, Santa Clara, CA, USA). The study focuses on up- as well as downregulation of genes from just before and at 8 time points after an application of short heat hardening (36 degrees C for 1 hour). The expression changes were followed up to 64 hours after the heat stress, using 4 biological replicates. This study describes in detail the dramatic change in gene expression over time induced by a short-term heat treatment. We found both known stress responding genes and new candidate genes, and processes to be involved in the stress response. We identified 3 main groups of stress responsive genes that were early-upregulated, early-downregulated, and late-upregulated, respectively, among 1222 differentially expressed genes in the data set. Comparisons with stress sensitive genes identified by studies of responses to other types of stress allow the discussion of heat-specific and general stress responses in Drosophila. Several unexpected features were revealed by this analysis, which suggests that novel pathways and mechanisms are involved in the responses to heat stress and to stress in general. The majority of stress responsive genes identified in this and other studies were downregulated, and the degree of overlap among downregulated genes was relatively high, whereas genes responding by upregulation to heat and other stress factors were more specific to the stress applied or to the conditions of the particular study. As an expected exception, heat shock genes were generally found to be upregulated by stress in general.  相似文献   

8.
9.
The acute heat-shock response of the tropical estuarine fish species barramundi Lates calcarifer as indicated by the expression of genes within stress (hsp 90AA, hsp 90AB, hsp 70 and hsc 70), metabolic (cisy, cco II and ldh) and growth (igf1 and mstn 1) related pathways was examined following an increase in water temperature from 28 to 36° C over 30 min. Lates calcarifer were maintained at the acute stress temperature of 36° C for 1 h before being returned to 28° C and allowed to recover at this temperature for a further 2 weeks. Muscle tissue sampling over the experimental period allowed for the expression quantification of stress, metabolic and growth-related genes via quantitative real-time polymerase chain reaction (qrt-PCR) where a robust and reliable normalization approach identified both α-tub and Rpl8 as appropriate genes for the analysis of gene expression in response to an acute heat stress. hsp90AA and hsp70 of the inducible heat-shock response pathway showed a massive up-regulation of gene expression in response to heat stress, whilst the constitutive heat-shock genes hsp90AB and hsp70 showed no change over the course of the experiment and a small increase after 2 weeks of recovery, respectively. Of the three genes representing the metabolic pathway (cisy, cco II and ldh) only cco II changed significantly showing a decrease in gene expression, which may suggest a small suppression of aerobic metabolism. igf1 of the growth pathway showed no significant differences in response to an acute heat stress, whilst mstn1 increased at the beginning of the heat stress but returned to basal levels soon after. Overall, the results demonstrate that an acute heat stress in L. calcarifer caused a significant increase in the expression of genes from the stress response pathway and a possible decrease in aerobic metabolism with only relatively minor changes to the growth pathway highlighting the hardy nature of L. calcarifer and its resilience in coping with sudden temperature changes routinely encountered within its natural environment.  相似文献   

10.
11.
12.
Clostridium difficile spores can survive extended heating at 71°C (160°F), a minimum temperature commonly recommended for adequate cooking of meats. To determine the extent to which higher temperatures would be more effective at killing C. difficile, we quantified (D values) the effect of moist heat at 85°C (145°F, for 0 to 30 min) on C. difficile spores and compared it to the effects at 71 and 63°C. Fresh (1-week-old) and aged (≥20-week-old) C. difficile spores from food and food animals were tested in multiple experiments. Heating at 85°C markedly reduced spore recovery in all experiments (5 to 6 log(10) within 15 min of heating; P < 0.001), regardless of spore age. In ground beef, the inhibitory effect of 85°C was also reproducible (P < 0.001), but heating at 96°C reduced 6 log(10) within 1 to 2 min. Mechanistically, optical density and enumeration experiments indicated that 85°C inhibits cell division but not germination, but the inhibitory effect was reversible in some spores. Heating at 63°C reduced counts for fresh spores (1 log(10), 30 min; P < 0.04) but increased counts of 20-week-old spores by 30% (15 min; P < 0.02), indicating that sublethal heat treatment reactivates superdormant spores. Superdormancy is an increasingly recognized characteristic in Bacillus spp., and it is likely to occur in C. difficile as spores age. The potential for reactivation of (super)dormant spores with sublethal temperatures may be a food safety concern, but it also has potential diagnostic value. Ensuring that food is heated to >85°C would be a simple and important intervention to reduce the risk of inadvertent ingestion of C. difficile spores.  相似文献   

13.
14.
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.  相似文献   

15.
Li JS  Bi YT  Dong C  Yang JF  Liang WD 《PloS one》2011,6(10):e25777
  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号