首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focal adhesion kinase-null (FAK(-/-) fibroblasts exhibit morphological and motility defects that are reversed by focal adhesion kinase (FAK) reexpression. The FAK-related kinase, proline-rich tyrosine kinase 2 (Pyk2), is expressed in FAK(-/-) cells, yet it exhibits a perinuclear distribution and does not functionally substitute for FAK. Chimeric Pyk2/FAK proteins were created and expressed in FAK(-/-) cells to determine the impact of Pyk2 localization to focal contacts. Whereas an FAK/Pyk2 COOH-terminal (CT) domain chimera was perinuclear distributed, stable expression of a Pyk2 chimera with the FAK-CT domain (Pyk2/FAK-CT) localized to focal contact sites and enhanced fibronectin (FN)-stimulated haptotactic cell migration equal to FAK-reconstituted cells. Disruption of paxillin binding to the FAK-CT domain (S-1034) inhibited Pyk2/FAK-CT localization to focal contacts and its capacity to promote cell motility. Paxillin binding to the FAK-CT was necessary but not sufficient to mediate the indirect association of FAK or Pyk2/FAK-CT with a beta 1-integrin-containing complex. Both FAK and Pyk2/FAK-CT but not Pyk2/FAK-CT S-1034 reconstituted FAK(-/-) cells, exhibit elevated FN-stimulated extracellular signal-regulated kinase 2 (ERK2) and c-Jun NH(2)-terminal kinase (JNK) kinase activation. FN-stimulated FAK or Pyk2/FAK-CT activation enhanced both the extent and duration of FN-stimulated ERK2 activity which was necessary for cell motility. Transient overexpression of the FAK-CT but not FAK-CT S-1034 domain inhibited both FN-stimulated ERK2 and JNK activation as well as FN-stimulated motility of Pyk2/FAK-CT reconstituted cells. These gain-of-function studies show that the NH(2)-terminal and kinase domains of Pyk2 can functionally substitute for FAK in promoting FN-stimulated signaling and motility events when localized to beta-integrin-containing focal contact sites via interactions mediated by the FAK-CT domain.  相似文献   

2.
We have recently discovered that the insulin-like growth factor receptor I (IGF-IR) is up-regulated in human invasive bladder cancer and promotes migration and invasion of transformed urothelial cells. The proteoglycan decorin, a key component of the tumor stroma, can positively regulate the IGF-IR system in normal cells. However, there are no available data on the role of decorin in modulating IGF-IR activity in transformed cells or in tumor models. Here we show that the expression of decorin inversely correlated with IGF-IR expression in low and high grade bladder cancers (n = 20 each). Decorin bound with high affinity IGF-IR and IGF-I at distinct sites and negatively regulated IGF-IR activity in urothelial cancer cells. Nanomolar concentrations of decorin promoted down-regulation of IRS-1, one of the critical proteins of the IGF-IR pathway, and attenuated IGF-I-dependent activation of Akt and MAPK. This led to decorin-evoked inhibition of migration and invasion upon IGF-I stimulation. Notably, decorin did not cause down-regulation of the IGF-IR in bladder, breast, and squamous carcinoma cells. This indicates that decorin action on the IGF-IR differs from its known activity on other receptor tyrosine kinases such as the EGF receptor and Met. Our results provide a novel mechanism for decorin in negatively modulating both IGF-I and its receptor. Thus, decorin loss may contribute to increased IGF-IR activity in the progression of bladder cancer and perhaps other forms of cancer where IGF-IR plays a role.  相似文献   

3.
Bladder cancer is the fourth most common cause of cancer in males in the United States. Invasive behavior is a major determinant of prognosis. In this study, we identified mammalian target of rapamycin complex 2 (mTORC2) as a central regulator of bladder cancer cell migration and invasion. mTORC2 activity was assessed by the extent of phosphorylation of Ser473 in AKT and determined to be approximately 5-fold higher in specimens of invasive human bladder cancer as opposed to non-invasive human bladder cancer. The immortalized malignant bladder cell lines, UMUC-3, J82 and T24 demonstrated higher baseline mTORC2 activity relative to the benign bladder papilloma-derived cell line RT4 and the normal urothelial cell line HU1. The malignant bladder cancer cells also demonstrated increased migration in transwell and denudation assays, increased invasion of matrigel, and increased capacity to invade human bladder specimens. Gene silencing of rictor, a critical component of mTORC2, substantially inhibited bladder cancer cell migration and invasion. This was accompanied by a significant decrease in Rac1 activation and paxillin phosphorylation. These studies identify mTORC2 as a major target for neutralizing bladder cancer invasion.  相似文献   

4.
Insulin-like growth factor I (IGF-I) promotes the motility of different cell types. We investigated the role of IGF-I receptor (IGF-IR) signaling in locomotion of MCF-7 breast cancer epithelial cells overexpressing the wild-type IGF-IR (MCF-7/IGF-IR). Stimulation of MCF-7/IGF-IR cells with 50 ng/ml IGF-I induced disruption of the polarized cell monolayer followed by morphological transition toward a mesenchymal phenotype. Immunofluorescence staining of the cells with rhodamine-phalloidin revealed rapid disassembly of actin fibers and development of a cortical actin meshwork. Activation of phosphatidylinositol (PI)3-kinase downstream of the IGF-IR was necessary for this process, as blocking PI 3-kinase activity with the specific inhibitor LY 294002 at 10 microM prevented disruption of the filamentous actin. In parallel, IGF-IR activation induced rapid and transient tyrosine dephosphorylation of focal adhesion proteins p125 focal adhesion kinase (FAK), p130 Crk-associated substrate (Cas), and paxillin. This process required phosphotyrosine phosphatase (PTP) activity, since pretreatment of the cells with 5 microM phenylarsine oxide (PAO), an inhibitor of PTPs, rescued FAK and its associated proteins Cas and paxillin from IGF-I-induced dephosphorylation. In addition, PAO-pretreated cells were refractory to IGF-I-induced morphological transition. Thus, our findings reveal a new function of the IGF-IR, the ability to depolarize epithelial cells. In MCF-7 cells, mechanisms of IGF-IR-mediated cell depolarization involve PI 3-kinase signaling and putative PTP activities.  相似文献   

5.
Eph receptors and ephrin ligands are widely expressed in epithelial cells and mediate cell repulsive motility through heterotypic cell-cell interactions. Several Ephs, including EphA2, are greatly overexpressed in certain tumors, in correlation with poor prognosis and high vascularity in cancer tissues. The ability of several Eph receptors to regulate cell migration and invasion likely contribute to tumor progression and metastasis. We report here that in prostatic carcinoma cells ephrinA1 elicits a repulsive response that is executed through a Rho-dependent actino/myosin contractility activation, ultimately leading to retraction of the cell body. This appears to occur through assembly of an EphA2-associated complex involving the two kinases Src and focal adhesion kinase (FAK). EphrinA1-mediated repulsion leads to the selective phosphorylation of Tyr-576/577 of FAK, enhancing FAK kinase activity. The repulsive response elicited by ephrinA1 in prostatic carcinoma cells is mainly driven by a Rho-mediated phosphorylation of myosin light chain II, in which Src and FAK activation are required steps. Consequently, Src and FAK are upstream regulators of the overall response induced by ephrinA1/EphA2, instructing cells to retract the cell body and to move away, probably facilitating dissemination and tissue invasion of ephrin-sensitive carcinomas.  相似文献   

6.
Choi JH  Yang YR  Lee SK  Kim IS  Ha SH  Kim EK  Bae YS  Ryu SH  Suh PG 《Cellular signalling》2007,19(8):1784-1796
Phospholipase C-gamma1 (PLC-gamma1), which generates two second messengers, namely, inositol-1, 4, 5-trisphosphate and diacylglycerol, is implicated in growth factor-mediated chemotaxis. However, the exact role of PLC-gamma1 in integrin-mediated cell adhesion and migration remains poorly understood. In this study, we demonstrate that PLC-gamma1 is required for actin cytoskeletal organization and cell motility through the regulation of Pyk2 and paxillin activation. After fibronectin stimulation, PLC-gamma1 directly interacted with the cytoplasmic tail of integrin beta1. In PLC-gamma1-silenced cells, integrin-induced Pyk2 and paxillin phosphorylation were significantly reduced and PLC-gamma1 potentiated the integrin-induced Pyk2/paxillin activation in its enzymatic activity-dependent manner. In addition, specific knock-down of PLC-gamma1 resulted in a failure to form focal adhesions dependent on fibronectin stimulation, which appeared to be caused by the suppression of Pyk2 and paxillin phosphorylation. Interestingly, PLC-gamma1 potentiated the activations of Rac, thus integrin-induced lamellipodia formation was up-regulated. Consequently, the strength of cell-substratum interaction and cell motility were profoundly up-regulated by PLC-gamma1. Taken together, these results suggest that PLC-gamma1 is a key player in integrin-mediated cell spreading and motility achieved by the activation of Pyk2/paxillin/Rac signaling.  相似文献   

7.
Removal of colony-stimulating factor 1 (CSF-1) causes macrophages to round up and to increase their expression of protein tyrosine phosphatase phi (PTP phi). This is accompanied by the disruption of focal complexes and the formation of ruffles. Here we have overexpressed wild-type (WT) PTP phi and a phosphatase-inactive (C325S) mutant in a macrophage cell line in the presence and absence of CSF-1. In the presence of CSF-1, WT PTP phi induces cell rounding and ruffle formation, while C325S PTP phi has no effect. In contrast, in CSF-1-starved cells, C325S PTP phi behaves in a dominant negative fashion, preventing rounding and ruffling. Furthermore, C325S PTP phi increases adhesion in cycling cells, while WT PTP phi enhances motility. In WT PTP phi-overexpressing cells, the focal contact protein paxillin is selectively depleted from focal complexes and specifically dephosphorylated on tyrosine. In contrast, paxillin is hyperphosphorylated in C325S PTP phi-expressing cells. Moreover, a complex containing PTP phi, paxillin, and a paxillin-associated tyrosine kinase, Pyk2, can be immunoprecipitated from macrophage lysates, and the catalytic domain of PTP phi selectively binds paxillin and Pyk2 in vitro. Although PTP phi and Pyk2 do not colocalize with paxillin in focal complexes, all three proteins are colocalized in dorsal ruffles. The results suggest that paxillin is dephosphorylated by PTP phi in dorsal ruffles, using Pyk2 as a bridging molecule, resulting in a reduced pool of tyrosine-phosphorylated paxillin available for incorporation into focal complexes, thereby mediating CSF-1 regulation of macrophage morphology, adhesion, and motility.  相似文献   

8.
Heregulin (HRG) has been implicated in the progression of breast cancer cells to a malignant phenotype, a process that involves changes in cell motility and adhesion. Here we demonstrate that HRG differentially regulates the site-specific phosphorylation of the focal adhesion components focal adhesion kinase (FAK) and paxilin in a dose-dependent manner. HRG at suboptimal doses (0.01 and 0.1 nM) increased adhesion of cells to the substratum, induced phosphorylation of FAK at Tyr-577, -925, and induced formation of well-defined focal points in breast cancer cell line MCF-7. HRG at a dose of 1 nM, increased migratory potential of breast cancer cells, selectively dephosphorylated FAK at Tyr-577, -925, and paxillin at Tyr-31. Tyrosine phosphorylation of FAK at Tyr-397 remained unaffected by HRG stimulation. FAK associated with HER2 only in response to 0.01 nM HRG. In contrast, 1 nM HRG induced activation and increased association of tyrosine phosphatase SHP-2 with HER2 but decreased association of HER2 with FAK. Expression of dominant-negative SHP-2 blocked HRG-mediated dephosphorylation of FAK and paxillin, leading to persistent accumulation of mature focal points. Our results suggest that HRG differentially regulates signaling from focal adhesion complexes through selective phosphorylation and dephosphorylation and that tyrosine phosphatase SHP-2 has a role in the HRG signaling.  相似文献   

9.
RAFTK/Pyk2-mediated cellular signalling   总被引:1,自引:0,他引:1  
Intracellular signal transduction following extracellular ligation by a wide variety of surface molecules involves the activation and tyrosine phosphorylation of protein tyrosine kinases (PTKs). Tyrosine phosphorylation, controlled by the coordinated actions of protein tyrosine phosphatases (PTPs) and tyrosine kinases, is a critical regulatory mechanism for various physiological processes, including cell growth, differentiation, metabolism, cell cycle regulation and cytoskeleton function. The focal adhesion PTK family consists of the focal adhesion kinase (FAK) and the RAFTK/Pyk2 kinase (also known as CAK-beta and CADTK). RAFTK/Pyk2 can be activated by a variety of extracellular signals that elevate intracellular calcium concentration, and by stress signals. RAFTK/Pyk2 is expressed mainly in the central nervous system and in cells derived from hematopoietic lineages, while FAK is widely expressed in various tissues and links transmembrane integrin receptors to intracellular pathways. This review describes the role of RAFTK/Pyk2 in various signalling cascades and details the differential signalling by FAK and RAFTK/Pyk2.  相似文献   

10.
《Journal of molecular biology》2014,426(24):3985-4001
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) subfamily of cytoplasmic tyrosine kinases. The C-terminal Pyk2-focal adhesion targeting (FAT) domain binds to paxillin, an adhesion molecule. Paxillin has five leucine-aspartate (LD) motifs (LD1–LD5). Here, we show that the second LD motif of paxillin, LD2, interacts with Pyk2-FAT, similar to the known Pyk2-FAT/LD4 interaction. Both LD motifs can target two ligand binding sites on Pyk2-FAT. Interestingly, they also share similar binding affinity for Pyk2-FAT with preferential association to one site relative to the other. Nevertheless, the LD2-LD4 region of paxillin (paxillin133 -290) binds to Pyk2-FAT as a 1:1 complex. However, our data suggest that the Pyk2-FAT and paxillin complex is dynamic and it appears to be a mixture of two distinct conformations of paxillin that almost equally compete for Pyk2-FAT binding. These studies provide insight into the underlying selectivity of paxillin for Pyk2 and FAK that may influence the differing behavior of these two closely related kinases in focal adhesion sites.  相似文献   

11.
Proline‐rich tyrosine kinase 2 (Pyk2) is a member of focal adhesion kinase (FAK) non‐receptor tyrosine kinase family and has been found to promote cancer cell survival, proliferation, migration, invasion, and metastasis. Pyk2 takes part in different carcinogenic signaling pathways to promote cancer progression, including epidermal growth factor receptor (EGFR) signaling pathway. EGFR signaling pathway is a traditional carcinogenic signaling pathway, which plays a critical role in tumorigenesis and tumor progression. FAK inhibitors have been reported to fail to get the ideal anti‐cancer outcomes because of activation of EGFR signaling pathway. Better understanding of Pyk2 downstream targets and interconnectivity between Pyk2 and carcinogenic EGFR signaling pathway will help finding more effective targets for clinical anti‐cancer combination therapies. Thus, the interconnectivity between Pyk2 and EGFR signaling pathway, which regulates tumor development and metastasis, needs to be elucidated. In this review, we summarized the downstream targets of Pyk2 in cancers, focused on the connection between Pyk2 and EGFR signaling pathway in different cancer types, and provided a new overview of the roles of Pyk2 in EGFR signaling pathway and cancer development.  相似文献   

12.
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.  相似文献   

13.
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.  相似文献   

14.
Sun CK  Ng KT  Lim ZX  Cheng Q  Lo CM  Poon RT  Man K  Wong N  Fan ST 《PloS one》2011,6(4):e18878

Aims

Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase of the focal adhesion kinase (FAK) family, is up-regulated in more than 60% of the tumors of hepatocellular carcinoma (HCC) patients. Forced overexpression of Pyk2 can promote the proliferation and invasion of HCC cells. In this study, we aimed to explore the underlying molecular mechanism of Pyk2-mediated cell migration of HCC cells.

Methodology/Principal Findings

We demonstrated that Pyk2 transformed the epithelial HCC cell line Hep3B into a mesenchymal phenotype via the induction of epithelial to mesenchymal transition (EMT), signified by the up-regulation of membrane ruffle formation, activation of Rac/Rho GTPases, down-regulation of epithelial genes E-cadherin and cytokeratin as well as promotion of cell motility in presence of lysophosphatidic acid (LPA). Suppression of Pyk2 by overexpression of dominant negative PRNK domain in the metastatic HCC cell line MHCC97L transformed its fibroblastoid phenotype to an epithelial phenotype with up-regulation of epithelial genes, down-regulation of mesenchymal genes N-cadherin and STAT5b, and reduction of LPA-induced membrane ruffle formation and cell motility. Moreover, overexpression of Pyk2 in Hep3B cells promoted the phosphorylation and localization of mesenchymal gene Hic-5 onto cell membrane while suppression of Pyk2 in MHCC97L cells attenuated its phosphorylation and localization.

Conclusion

These data provided new evidence of the underlying mechanism of Pyk2 in controlling cell motility of HCC cells through regulation of genes associated with EMT.  相似文献   

15.
The signals involved in restitution during mucosal healing are poorly understood. We compared focal adhesion kinase (FAK) and paxillin protein and phosphorylation, extracellular signal-regulated kinase (ERK) 1, ERK2, and p38 activation, as well as FAK and paxillin organization in static and migrating human intestinal Caco-2 cells on matrix proteins and anionically derivatized polystyrene dishes (tissue culture plastic). We also studied effects of FAK, ERK, and p38 blockade in a monolayer-wounding model. Compared with static cells, cells migrating across matrix proteins matrix-dependently decreased membrane/cytoskeletal FAK and paxillin and cytosolic FAK. Tyrosine phosphorylated FAK and paxillin changed proportionately to FAK and paxillin protein. Conversely, cells migrating on plastic increased FAK and paxillin protein and phosphorylation. Migration matrix-dependently activated p38 and inactivated ERK1 and ERK2. Total p38, ERK1, and ERK2 did not change. Caco-2 motility was inhibited by transfection of FRNK (the COOH-terminal region of FAK) and PD-98059, a mitogen-activated protein kinase-ERK kinase inhibitor, but not by SB-203580, a p38 inhibitor, suggesting that FAK and ERK modulate Caco-2 migration. In contrast to adhesion-induced phosphorylation, matrix may regulate motile intestinal epithelial cells by altering amounts and distribution of focal adhesion plaque proteins available for phosphorylation as well as by p38 activation and ERK inactivation. Motility across plastic differs from migration across matrix.  相似文献   

16.
Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1).  相似文献   

17.
B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells.  相似文献   

18.
MDA-MB-231 cells are highly aggressive human breast adenocarcinoma cells that depend on PLD activity for survival. In response to the stress of serum withdrawal, there is increased motility and invasiveness of these cells that is associated with a rapid increase in PLD activity. In addition, PLD activity is elevated in response to most mitogenic signals. Similar to PLD, paxillin, a focal adhesion adaptor protein, and Erk, mitogen-activated protein kinase, play vital roles in cell motility through regulation of focal adhesion dynamics. Here, we addressed whether there is a functional correlation between paxillin and PLD that may influence cancer cell motility. We investigated the role of PLD activity on paxillin regulation, Erk activation and formation of a paxillin-Erk and paxillin-FAK association. Inhibition of PLD activity led to an increase in paxillin tyrosine phosphorylation, a decrease in Erk activation, as measured by phosphorylation, and enhanced association of paxillin with Erk. In addition, we found that paxillin tyrosine phosphorylation depends upon Erk activity and may be a consequence of an increased association with FAK. Taken together, these results suggest that Erk activity is governed by PLD activity and regulates the tyrosine phosphorylation of paxillin, potentially explaining its role in cell motility. This study indicated that PLD, Erk, paxillin and FAK participate in the same signaling pathway in this breast cancer cell line.  相似文献   

19.
Hic-5 is a paxillin homologue that is localized to focal adhesion complexes. Hic-5 and paxillin share structural homology and interacting factors such as focal adhesion kinase (FAK), Pyk2/CAKbeta/RAFTK, and PTP-PEST. Here, we showed that Hic-5 inhibits integrin-mediated cell spreading on fibronectin in a competitive manner with paxillin in NIH 3T3 cells. The overexpression of Hic-5 sequestered FAK from paxillin, reduced tyrosine phosphorylation of paxillin and FAK, and prevented paxillin-Crk complex formation. In addition, Hic-5-mediated inhibition of spreading was not observed in mouse embryo fibroblasts (MEFs) derived from FAK(-/-) mice. The activity of c-Src following fibronectin stimulation was decreased by about 30% in Hic-5-expressing cells, and the effect of Hic-5 was restored by the overexpression of FAK and the constitutively active forms of Rho-family GTPases, Rac1 V12 and Cdc42 V12, but not RhoA V14. These observations suggested that Hic-5 inhibits cell spreading through competition with paxillin for FAK and subsequent prevention of downstream signal transduction. Moreover, expression of antisense Hic-5 increased spreading in primary MEFs. These results suggested that the counterbalance of paxillin and Hic-5 expression may be a novel mechanism regulating integrin-mediated signal transduction.  相似文献   

20.
Integration of signalling pathways initiated by receptor tyrosine kinases and integrins is essential for growth-factor-mediated biological responses. Here we show that co-stimulation of growth-factor receptors and integrins activates the focal-adhesion kinase (FAK) family to promote outgrowth of neurites in PC12 and SH-SY5Y cells. Pyk2 and FAK associate with adhesion-based complexes that contain epidermal growth factor (EGF) receptors, through their carboxy- and amino-terminal domains. Expression of the C-terminal domain of Pyk2 or of FAK is sufficient to block neurite outgrowth, but not activation of extracellular-signal-regulated kinase (ERK). Moreover, activation and autophosphorylation of Pyk2/FAK, as well as of effectors of their adhesion-targeting domains, such as paxillin, are important for propagation of signals that control neurite formation. Thus, Pyk2/FAK have important functions in signal integration proximal to integrin/growth-factor receptor complexes in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号