首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
Pollen development is disturbed in the microspore development stage of the double-recessive nuclear male-sterile line ms5ms6 (Gossypium hirsutum L.). This study aimed to identify differentially expressed anther proteins and their potential roles in pollen development and male sterility. We compared the proteomes of sterile and fertile anthers of the double recessive nuclear male-sterile line ms5ms6. Approximately 1,390 protein spots were detected by two-dimensional differential gel electrophoresis. Proteins with altered accumulation levels in sterile anthers compared with fertile anthers were identified by mass spectrometry and the NCBInr and Viridiplantae EST databases. Down-regulated proteins in the sterile anthers included cytosolic ascorbate peroxidase 1 and glutaminyl-tRNA synthetase (glutamine-tRNA ligase). Several carbohydrate metabolism- and photosynthesis-related enzymes were also present at lower levels in the mutant anthers. By contrast, ATP-dependent RNA helicase eIF4A-13, NADH dehydrogenase subunit 1, enolase, gibberellin 20-oxidase, gibberellin 3-hydroxylase 1, alcohol dehydrogenase 2d, 3-ketoacyl-CoA synthase, and trehalose 6-phosphate synthase were expressed at higher levels in sterile anthers than in fertile anthers. The regulation of upland cotton pollen development involves a complex network of differentially expressed genes. This study provides the foundation for future investigations of gene function in upland cotton pollen development and male sterility.  相似文献   

4.
Sexual reproduction in plants requires development of haploid gametophytes from somatic tissues. Pollen is the male gametophyte and develops within the stamen; defects in the somatic tissues of the stamen and in the male gametophyte itself can result in male sterility. The maize fuzzy tassel (fzt) mutant has a mutation in dicer-like1 (dcl1), which encodes a key enzyme required for microRNA (miRNA) biogenesis. Many miRNAs are reduced in fzt, and fzt mutants exhibit a broad range of developmental defects, including male sterility. To gain further insight into the roles of miRNAs in maize stamen development, we conducted a detailed analysis of the male sterility defects in fzt mutants. Early development was normal in fzt mutant anthers, however fzt anthers arrested in late stages of anther maturation and did not dehisce. A minority of locules in fzt anthers also exhibited anther wall defects. At maturity, very little pollen in fzt anthers was viable or able to germinate. Normal pollen is tricellular at maturity; pollen from fzt anthers included a mixture of unicellular, bicellular, and tricellular pollen. Pollen from normal anthers is loaded with starch before dehiscence, however pollen from fzt anthers failed to accumulate starch. Our results indicate an absolute requirement for miRNAs in the final stages of anther and pollen maturation in maize. Anther wall defects also suggest that miRNAs have key roles earlier in anther development. We discuss candidate miRNAs and pathways that might underlie fzt anther defects, and also note that male sterility in fzt resembles water deficit-induced male sterility, highlighting a possible link between development and stress responses in plants.  相似文献   

5.
6.
Reversible male sterility and doubled haploid plant production are two valuable technologies in F1-hybrid breeding. F1-hybrids combine uniformity with high yield and improved agronomic traits, and provide self-acting intellectual property protection. We have developed an F1-hybrid seed technology based on the metabolic engineering of glutamine in developing tobacco anthers and pollen. Cytosolic glutamine synthetase (GS1) was inactivated in tobacco by introducing mutated tobacco GS genes fused to the tapetum-specific TA29 and microspore-specific NTM19 promoters. Pollen in primary transformants aborted close to the first pollen mitosis, resulting in male sterility. A non-segregating population of homozygous doubled haploid male-sterile plants was generated through microspore embryogenesis. Fertility restoration was achieved by spraying plants with glutamine, or by pollination with pollen matured in vitro in glutamine-containing medium. The combination of reversible male sterility with doubled haploid production results in an innovative environmentally friendly breeding technology. Tapetum-mediated sporophytic male sterility is of use in foliage crops, whereas microspore-specific gametophytic male sterility can be applied to any field crop. Both types of sterility preclude the release of transgenic pollen into the environment.  相似文献   

7.
宁夏枸杞雄性不育种质个体YX-1的发现与鉴定   总被引:15,自引:2,他引:13  
从宁夏枸杞主栽品种宁杞1号生产园内发现雄性不育种质YX-1个体,本研究对其生殖发育进行了进一步的实验验证,结果表明:YX-1植株花柱超长,柱头高于雄蕊;雄蕊花丝较短,花药外形正常且花药开裂,但无花粉粒散出,染色实验未见着色的花粉粒;强制自交结实率为0,异花人工授粉座果率为100%,成熟鲜果平均单果重为宁杞1号的180%以上;经花药发育及小孢子发生过程观察,YX-1败育主要发生在四分体时期,表现为四分体无法正常释放形成单核花粉粒,绒毡层细胞径向伸长和液泡化,之后延迟解体而整体脱落.初步研究结果表明YX-1种质表现雄性不育且杂种优势明显,具有良好的利用前景.  相似文献   

8.
Among the >200 members of the leucine-rich repeat receptor kinase family in Arabidopsis thaliana, only a few have been functionally characterized. Here, we report a critical function in anther development for the SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 (SERK1) and SERK2 genes. Both SERK1 and SERK2 are expressed widely in locules until stage 6 anthers and are more concentrated in the tapetal cell layer later. Whereas serk1 and serk2 single insertion mutants did not show developmental phenotypes, serk1 serk2 double mutants were not able to produce seeds because of a lack of pollen development in mutant anthers. In young buds, double mutant anthers developed normally, but serk1 serk2 microsporangia produced more sporogenous cells that were unable to develop beyond meiosis. Furthermore, serk1 serk2 double mutants developed only three cell layers surrounding the sporogenous cell mass, whereas wild-type anthers developed four cell layers. Further confocal microscopic and molecular analyses showed that serk1 serk2 double mutant anthers lack development of the tapetal cell layer, which accounts for the microspore abortion and male sterility. Taken together, these findings demonstrate that the SERK1 and SERK2 receptor kinases function redundantly as an important control point for sporophytic development controlling male gametophyte production.  相似文献   

9.
10.
丹参雄性不育系Sh-B的鉴定与花粉发育过程的解剖学研究   总被引:1,自引:0,他引:1  
在显微水平上对新发现的丹参雄性不育系Sh-B花药发育过程进行了解剖学观察,并对其花粉活力和结实率进行了鉴定。结果显示:根据花器官及花药的形态、大小以及花丝的长度,可以将Sh-B不育株分为3个不育类型,即Sh-B1、Sh-B2和Sh-B3。这3种不育类型均属于雄性不育,其花丝不到正常可育株的1/2,花药干瘪而瘦小,内无花粉粒或花粉无活力;其根、茎、叶以及种子形态结构与正常可育植株基本相似。产生雄性不育的主要原因有:花粉囊药室内壁纤维层加厚,影响花药壁开裂;小孢子母细胞周围不产生胼胝质或产生的胼胝质很少;绒毡层细胞延迟解体;花粉粒畸形。在其花药发育的小孢子母细胞时期、四分体形成前期、单核期、双核期均可能产生雄性不育的小孢子或花粉粒。  相似文献   

11.
Rice crops are vulnerable to low temperatures. During development, the reproductive stage is particularly sensitive to cold exposure, which causes abnormal pollen development and a high degree of male sterility. In this study, shotgun proteomic analysis was used to analyze rice anthers containing pollen grains from a cold-tolerant variety, Dianxi 4. Protein expression was compared between normal anthers and anthers exposed to cold temperatures at the young microspore stage. In total, 3835 non-redundant proteins were identified in the rice anther. Of these, 441 proteins were differentially expressed between normal and cold-treated anthers. Pollen allergens, ATP synthase, actin, profilin, and β-expansin proteins were highly abundant, reflecting anther development, pollen germination, and pollen tube elongation. Starch and sucrose metabolic proteins such as α-amylase precursor and 4-α-glucanotransferase exhibited reduced expression after cold exposure. Among the proteins that exhibited increased expression after cold exposure, C2 domain proteins, and GRPs were identified as candidate signaling factors for mediation of the cold tolerance response. Through high-throughput proteomic analysis we were able to reveal proteomic changes against cold stress and suggest two signaling factors as the candidate genes.  相似文献   

12.
In flowering plants, male gametophytes are generated in anthers from microsporocytes. However, more evidence is needed to reveal the genetic mechanisms which regulate the differentiation and interaction of these highly specialized cells in anthers. Here we report the characterization of a series of male-sterile cotton (Gossypium hirsutum) mutants, including mutants with normal fertility, semi-sterility and complete sterility. These mutants are forms of transgenic cotton containing RNAi vectors with partial cDNA fragments of GhSERK1. The GhSERK1 gene encodes a putative leucine-rich repeat receptor protein kinase (LRR-RLK), and generally has 11 domains. In previous research, we found plants containing GhSERK1 produce an abundance of male reproductive tissue. In this paper, three RNAi constructs were designed separately to analyze its function in anther. After the three RNAi vectors were transformed into the cotton, transgenic plants with the specialized fragment exhibited normal fertility or the pollen energy decreased slightly, as ones with the homologous fragments exhibited various degrees of male sterility with different expression levels of GhSERK1 mRNA. In conclusion, for the transgenic plants with conserved fragments, lower expression levels of GhSERK1 mRNA were in transgenic plants, and a higher degree of male sterility was observed. Taking together, these findings demonstrate the GhSERK1 gene has a role in the development of anthers, especially in the formation of pollen grains. Also, we infer there must be another homolog of GhSERK1 in cotton, and both of GhSERK1 and its homolog function redundantly as important control points in controlling anther pollen production.  相似文献   

13.
Expression of many proteinases has been documented during anther development. Although their roles are not completely understood, their inhibition could possibly result in impairment of anther development leading to male sterility. We proposed that such an impairment of anther development can be engineered in plants resulting in male sterile plants that can be used for hybrid seed production. Here, we report that anther-specific expression of Aprotinin gene (serine proteinase inhibitor) in tobacco has resulted in male sterility. Southern analysis and zymogram analysis confirmed the integration and expression of Aprotinin gene in the anthers of the transgenic plants. Transverse sections of anthers of transgenic male sterile plants showed damaged tapetum. The pollen germination in the transgenic plants ranged between 2% and 65% that confirmed the impairment in pollen production leading to male sterility and low seed yield. Thus, inhibition of serine proteinases that are expressed during anther development has resulted in impaired pollen production and male sterility, though the exact role of these proteinases in anther development still has to be elucidated.  相似文献   

14.
15.
16.
Male reproductive development of rice (Oryza sativa L.) is very sensitive to drought. A brief, transitory episode of water stress during meiosis in pollen mother cells of rice grown under controlled environmental conditions induced pollen sterility. Anthers containing sterile pollen were smaller, thinner, and often deformed compared to normal anthers of well-watered plants. Only about 20% of the fully developed florets in stressed plants produced grains, compared to 90% in well-watered controls. Water stress treatments after meiosis were progressively less damaging. Levels of starch and sugars and activities of key enzymes involved in sucrose cleavage and starch synthesis were analyzed in anthers collected at various developmental stages from plants briefly stressed during meiosis and then re-watered. Normal starch accumulation during pollen development was strongly inhibited in stress-affected anthers. During the period of stress, both reducing and non-reducing sugars accumulated in anthers. After the relief of stress, reducing sugar levels fell somewhat below those in controls, but levels of non-reducing sugars remained higher than in controls. Activities of acid invertase and soluble starch synthase in stressed anthers were lower than in controls at comparable stages throughout development, during as well as after stress. Stress had no immediate effect on ADP-glucose pyrophosphorylase activity, but had an inhibitory aftereffect throughout post-stress development. Sucrose synthase activity, which was, relatively speaking, much lower than acid invertase activity, was only slightly suppressed by stress. The results show that it is unlikely that pollen sterility, or the attendant inhibition of starch accumulation, in water-stressed rice plants are caused by carbohydrate starvation per se. Instead, an impairment of enzymes of sugar metabolism and starch synthesis may be among the potential causes of this failure.  相似文献   

17.
18.
A male cone-specific promoter from Pinus radiata D. Don (radiata pine) was used to express a stilbene synthase gene (STS) in anthers of transgenic Nicotiana tabacum plants, resulting in complete male sterility in 70% of transformed plants. Three plants were 98%-99.9% male sterile, as evidenced by pollen germination. To identify the stage at which transgenic pollen first developed abnormally, tobacco anthers from six different developmental stages were assayed microscopically. Following the release of pollen grains from tetrads, transgenic pollen displayed an increasingly flake-like structure, which gradually rounded up during the maturation process. We further investigated whether STS expression may have resulted in an impaired flavonol or sporopollenin formation. A specific flavonol aglycone stain was used to demonstrate that significant amounts of these substances were produced only in late stages of normal pollen development, therefore excluding a diminished flavonol aglycone production as a reason for pollen ablation. A detailed analysis of the exine layer by transmission electron microscopy revealed minor structural changes in the exine layer of ablated pollen, and pyrolysis-gas chromatography-mass spectroscopy indicated that the biochemistry of sporopollenin production was unaffected. The promoter-STS construct may be useful for the ablation of pollen formation in coniferous gymnosperms and male sterility may potentially be viewed as a prerequisite for the commercial use of transgenic conifers.  相似文献   

19.
Metabolic engineering was used to disrupt glutamine metabolism in microspores in order to block pollen development. We used a dominant-negative mutant (DNM) approach of cytosolic glutamine synthetase (GS1) gene under the microspore-specific promoter NTM19 to block glutamine synthesis in developing pollen grains. We observed partial male sterility in primary transgenic plants by using light microscopy, FDA, DAPI and in vitro pollen germination test. Microspores started to die in the early unicellular microspore stage, pollen viability in all primary transgenic lines ranged from 40-50%. All primary transgenics produced seeds like control plants, hence the inserted gene did not affect the sporophyte and was inherited through the female germline. We regenerated plants by in vitro microspore embryogenesis from 4 individual lines, pollen viability of progeny ranged from 12 to 20%, but some of them also showed 100% male sterility. After foliage spray with glutamine, 100% male-sterile plants were produced viable pollen and seed set was also observed. These results suggested that mutated GS1 activity on microspores had a significant effect on normal pollen development. Back-cross progenies (T2) of DH 100% male-sterile plants showed normal seed set like primary transgenics and control plants.  相似文献   

20.
 Genetic and cytological studies were conducted with a new male-sterile, female-fertile soybean [Glycine max (L.) Merr.] mutant. This mutant was completely male sterile and was inherited as a single-recessive gene. No differences in female or male gamete transmission of the recessive allele were observed between reciprocal cross-pollinations in the F1 or F2 generations. This mutant was not allelic to any previously identified soybean genic male-sterile mutants: ms1, ms2, ms3, ms4, ms5, or ms6. No linkage was detected between sterility and flower color (W1 locus), or between sterility and pubescence color (T1 locus). Light microscopic and cytological observations of microsporogenesis in fertile and sterile anthers were conducted. The structure of microspore mother cells (MMC) in male-sterile plants was identical to the MMCs in male-fertile plants. Enzyme extraction analyses showed that there was no callase activity in male-sterile anthers, and this suggests that sterility was caused by retention of the callose walls, which normally are degraded around tetrads at the late tetrad stage. The tapetum from male-sterile anthers also showed abnormalities at the tetrad stage and later stages, which were expressed by an unusual formation of vacuoles, and by accumulation of densely staining material. At maturity, anthers from sterile plants were devoid of pollen grains. Received: 13 May 1996 / Revision accepted: 19 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号