首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
hGBP1 is a GTPase with antiviral activity encoded by an interferon- activated human gene. Specific binding of hGBP1 to guanine nucleotides has been established although only two classical GTP-binding motifs were found in its primary sequence. The unique position of hGBP1 amongst known GTPases is further demonstrated by the hydrolysis of GTP to GDP and GMP. Although subsequent cleavage of orthophosphates rather than pyrophosphate was demonstrated, GDP coming from bulk solution cannot serve as a substrate. The relation of guanine nucleotide binding and hydrolysis to the antiviral function of hGBP1 is unknown. Here we show similar binding affinities for all three guanine nucleotides and the ability of both products, GDP and GMP, to compete with GTP binding. Fluorimetry and isothermal titration calorimetry were applied to prove that only one nucleotide binding site is present in hGBP1. Furthermore, we identified the third canonical GTP-binding motif and verified its role in nucleotide recognition by mutational analysis. The high guanine nucleotide dissociation rates measured by stopped-flow kinetics are responsible for the weak affinities to hGBP1 when compared to other GTPases like Ras or Galpha. By means of fluorescence and NMR spectroscopy it is demonstrated that aluminium fluoride forms a complex with hGBP1 only in the GDP state, presumably mimicking the transition state of GTP hydrolysis. Tentatively, the involvement of a GAP domain in hGBP1 in GTP hydrolysis is suggested. These results will serve as a basis for the determination of the differential biological functions of the three nucleotide states and for the elucidation of the unique mechanism of nucleotide hydrolysis catalysed by hGBP1.  相似文献   

2.
The mechanism of oligomerization and its role in the regulation of activity in large GTPases are not clearly understood. Human guanylate binding proteins (hGBP-1 and 2) belonging to large GTPases have the unique feature of hydrolyzing GTP to a mixture of GDP and GMP with unequal ratios. Using a series of truncated and mutant proteins of hGBP-1, we identified a hydrophobic helix in the connecting region between the two domains that plays a critical role in dimerization and regulation of the GTPase activity. The fluorescence with 1-8-anilinonaphthalene sulfonate and circular dichroism measurements together suggest that in the absence of the substrate analog, the helix is masked inside the protein but becomes exposed through a substrate-induced conformational switch, and thus mediates dimerization. This is further supported by the intrinsic fluorescence experiment, where Leu298 of this helix is replaced by a tryptophan. Remarkably, the enzyme exhibits differential GTPase activities depending on dimerization; a monomer produces only GDP, but a dimer gives both GDP and GMP with stimulation of the activity. An absolute dependence of GMP formation with dimerization demonstrates a cross talk between the monomers during the second hydrolysis. Similar to hGBP-1, hGBP-2 showed dimerization-related GTPase activity for GMP formation, indicating that this family of proteins follows a broadly similar mechanism for GTP hydrolysis.  相似文献   

3.
Unlike other GTPases, interferon-gamma-induced human guanylate binding protein-1 has the ability to hydrolyze GTP to both GDP and GMP, with GMP being the major product of the reaction. This protein has two domains, an N-terminal globular domain and a C-terminal helical domain. These two domains are connected by a short intermediate region consisting of a two-stranded β-sheet and a helix. As human guanylate binding protein-1 has been shown to undergo stimulated GTPase activity without external GTPase-activating protein, we sought to understand the roles of each of the two individual domains, the intermediate region, a conserved motif (103DXEKGD108), and the mechanism of the stimulation of GTPase activity. The steady-state assays using radiolabeled [α-32P]GTP on the wild-type protein suggest that the stimulation of activity primarily occurs during the cleavage of the second phosphate of GTP rather than the first, through allosteric interaction. Using several truncated and mutant proteins, we demonstrate for the first time that both the α-helix of the intermediate region and the 103DXEKGD108 motif play critical roles for the hydrolysis to GMP, but they appear to act in different ways: α-helix acts through structural stabilization by allosteric interaction and, thus, acts as an internal GTPase-activating protein, whereas the motif might act by providing necessary catalytic residues. Our data also show that the N-terminal globular domain is able to perform only the first catalysis (GTP to GDP, an activity associated with basal level), but the helical domain in the full-length protein stimulates the hydrolysis of GTP to GMP with higher GMP formation by preventing the dissociation of GDP-bound enzyme dimer.  相似文献   

4.
Within the family of large GTP-binding proteins, human guanylate binding protein 1 (hGBP1) belongs to a subgroup of interferon-inducible proteins. GTP hydrolysis activity of these proteins is much higher compared with members of other GTPase families and underlies mechanisms that are not understood. The large GTP-binding proteins form self-assemblies that lead to stimulation of the catalytic activity. The unique result of GTP hydrolysis catalyzed by hGBP1 is GDP and GMP. We investigated this reaction mechanism by transient kinetic methods using radioactively labeled GTP as well as fluorescent probes. Substrate binding and formation of the hGBP1 homodimer are fast as no lag phase is observed in the time courses of GTP hydrolysis. Instead, multiple turnover experiments show a rapid burst of P(i) formation prior to the steady state phase, indicating a rate-limiting step after GTP cleavage. Both molecules are catalytically active and cleave off a phosphate ion in the first step. Then bifurcation into catalytic inactivation, probably by irreversible dissociation of the dimer, and into GDP hydrolysis is observed. The second cleavage step is even faster than the first step, implying a rapid rearrangement of the nucleotide within the catalytic center of hGBP1. We could also show that the release of the products, including the phosphate ions, is fast and not limiting the steady state activity. We suggest that slow dissociation of the GMP-bound homodimer gives rise to the burst behavior and controls the steady state. The assembled forms of the GDP- and GMP-bound states of hGBP1 are accessible only through GTP binding and hydrolysis and achieve a lifetime of a few seconds.  相似文献   

5.
Rab proteins belong to the family of monomeric GTPases which are involved in the cellular membrane trafficking. Rab21 protein exists in interchangeable GTP- and GDP-bound states. Rabs switch between two active and inactive conformations like other GTPases. The inactive form of Rab is bound to GDP while its active form is bounded with the GTP. Interexchange between active and inactive form is mediated by the GDP/GTP exchange factor (GEF) which catalyses the conversion from GDP-bound to GTP-bound form, thereby activating the Rab. While the GTP hydrolysis of Rabs is regulated by a GTPase-activating protein (GAP) which causes Rab inactivation. Here, we report the structural flexibility of the Rab21-GTP and Rab21-GDP complexes by docking and molecular dynamics (MD) simulations. Structural analysis of exchange mechanisms of the co-factors complexed with Rab21 reveals that Cys29, Thr33, His48, Gln78 and Lys133 are essentially important in the activation of proteins. Furthermore, a significant change in the orientation of the interacting co-factors, with slight variation in the free energy of binding was observed. Complexation of GEF with Rab21-GTP and Rab21-GDP reveal a flipping of the switchable residues. Finally, 50 ns MD simulations confirm that the GTP-bound Rab21 complex is thermodynamically more favoured than the corresponding GDP-bound complex. This study provides a detailed understanding of the structural elements involved in the conformational changes of Rab21.  相似文献   

6.
GTPase domain crystal structures of Rab5a wild type and five variants with mutations in the phosphate-binding loop are reported here at resolutions up to 1.5 A. Of particular interest, the A30P mutant was crystallized in complexes with GDP, GDP+AlF(3), and authentic GTP, respectively. The other variant crystals were obtained in complexes with a non-hydrolyzable GTP analog, GppNHp. All structures were solved in the same crystal form, providing an unusual opportunity to compare structures of small GTPases with different catalytic rates. The A30P mutant exhibits dramatically reduced GTPase activity and forms a GTP-bound complex stable enough for crystallographic analysis. Importantly, the A30P structure with bound GDP plus AlF(3) has been solved in the absence of a GTPase-activating protein, and it may resemble that of a transition state intermediate. Conformational changes are observed between the GTP-bound form and the transition state intermediate, mainly in the switch II region containing the catalytic Gln(79) residue and independent of A30P mutation-induced local alterations in the P-loop. The structures suggest an important catalytic role for a P-loop backbone amide group, which is eliminated in the A30P mutant, and support the notion that the transition state of GTPase-mediated GTP hydrolysis is of considerable dissociative character.  相似文献   

7.
Cell division control protein 42 homolog (Cdc42) protein, a Ras superfamily GTPase, regulates cellular activities, including cancer progression. Using all-atom molecular dynamics (MD) simulations and essential dynamic analysis, we investigated the structure and dynamics of the catalytic domains of GDP-bound (inactive) and GTP-bound (active) Cdc42 in solution. We discovered substantial differences in the dynamics of the inactive and active forms, particularly in the “insert region” (residues 122–135), which plays a role in Cdc42 activation and binding to effectors. The insert region has larger conformational flexibility in the GDP-bound Cdc42 than in the GTP-bound Cdc42. The G2 loop and switch I at the effector lobe of the catalytic domain exhibit large conformational changes in both the GDP- and the GTP-bound systems, but in the GTP-bound Cdc42, the switch I interactions with GTP are retained. Oncogenic mutations were identified in the Ras superfamily. In Cdc42, the G12V and Q61L mutations decrease the GTPase activity. We simulated these mutations in both GDP- and GTP-bound Cdc42. Although the overall structural organization is quite similar between the wild type and the mutants, there are small differences in the conformational dynamics, especially in the two switch regions. Taken together, the G12V and Q61L mutations may play a role similar to their K-Ras counterparts in nucleotide binding and activation. The conformational differences, which are mainly in the insert region and, to a lesser extent, in the switch regions flanking the nucleotide binding site, can shed light on binding and activation. We propose that the differences are due to a network of hydrogen bonds that gets disrupted when Cdc42 is bound to GDP, a disruption that does not exist in other Rho GTPases. The differences in the dynamics between the two Cdc42 states suggest that the inactive conformation has reduced ability to bind to effectors.  相似文献   

8.

Background  

Rho subfamily GTPases are implicated in a large number of actin-related processes. They shuttle from an inactive GDP-bound form to an active GTP-bound form. This reaction is catalysed by Guanine nucleotide exchange factor (GEFs). GTPase activating proteins (GAPs) help the GTPase return to the inactive GDP-bound form. The social amoeba Dictyostelium discoideum lacks a Rho or Cdc42 ortholog but has several Rac related GTPases. Compared to our understanding of the downstream effects of Racs our understanding of upstream mechanisms that activate Rac GTPases is relatively poor.  相似文献   

9.
The Ras-like GTPases regulate diverse cellular functions via the chemical cycle of binding and hydrolyzing GTP molecules. They alternate between GTP- and GDP-bound conformations. The GTP-bound conformation is biologically active and promotes a cellular function, such as signal transduction, cytoskeleton organization, protein synthesis/translocation, or a membrane budding/fusion event. GTP hydrolysis turns off the GTPase switch by converting it to the inactive GDP-bound conformation. The fundamental GTP hydrolysis mechanism by these GTPases has generated considerable interest over the last two decades but remained to be firmly established. This review provides an update on the catalytic mechanism with discussions on recent developments from kinetic, structural, and model studies in the context of the various GTP hydrolysis models proposed over the years.  相似文献   

10.
The interferon-gamma inducible large GTPase human guanylate binding protein-1 (hGBP-1) plays a key role in anti-pathogenic and anti-proliferative functions. This protein hydrolyzes GTP to both GDP and GMP (predominant product) through sequential phosphate cleavages, which makes it functionally distinct from other GTPases. Previous study on truncated variants of hGBP-1 suggested that the α-helix present in the intermediate region is essential for dimerization and thus for GMP formation. However, the role of this helix in the full-length protein in GMP formation is not clearly understood. Here, we present that substitution of the helix with a Gly-rich flexible (GGS)3 sequence in the full-length hGBP-1 (termed as linker protein) showed a drastic decrease in GMP formation. Unlike wild-type, the linker protein is not capable of undergoing substrate-induced dimerization and thereby transition state-induced tetramerization, suggesting the importance of the helix in oligomerization. Furthermore, we examined the effect of interactions between this helix and the α2-helix of the globular domain in GMP formation through mutational studies. The L118G mutation in the α2-helix showed a significantly reduced GMP formation. These results indicate that the interactions of the α-helix with the α2-helix are essential for enhanced GMP production. We propose that these interactions help in the oligomerization-assisted proper positioning of the catalytic machinery for efficient second phosphate cleavage. These findings thus provide a better understanding into the regulation of GMP formation in a large GTPase hGBP-1.  相似文献   

11.
12.
Small GTPases act as binary switches by cycling between an inactive (GDP-bound) and an active (GTP-bound) state. Upon stimulation with extracellular signals, guanine-nucleotide exchange factors (GEFs) stimulate the exchange of GDP to GTP to shift toward the active forms of small GTPases, recognizing the downstream targets. Here we show that KIAA0793, containing substantial sequence homology with the catalytic Dbl homology domain of the faciogenital dysplasia gene product (FGD1), is a specific GEF for Cdc42. We, therefore, tentatively named it FRG (FGD1-related Cdc42-GEF). Src kinase directly phosphorylates and activates FRG, as Vav family GEFs. Additionally, FRG is involved in the signaling pathway from the endothelin A receptor to c-Jun N-terminal kinase, resulting in the inhibition of cell motility. These results suggest that FRG is a member of Cdc42-GEF and plays an important role in the signaling pathway downstream of G protein-coupled receptors.  相似文献   

13.
Goody RS 《Biophysical chemistry》2003,100(1-3):535-544
A large number of GTP/GDP binding proteins, which in general have intrinsic and/or stimulatable GTPase activity, have been identified in recent years and are involved in a wide range of cellular regulatory and signal transducing processes. A common property of these proteins is that they exist in what is generally described as an active form when GTP is bound and an inactive (resting) form when GDP is present. Thus, the intrinsic or stimulated GTPase activity of these ‘enzymes’ serves to turn off a signal or to terminate a regulated process. It has been suggested that these proteins, together with ATPases whose prime function is to convert the free energy of ATP hydrolysis into another form of energy or into energy-requiring chemical reactions should be grouped together under the heading of ‘energyases’. In this article, this suggestion is examined from the point of view of identifying the role of the free-energy of hydrolysis of GTP in the signal-transducing or regulatory process of the GTPases. It is concluded that there is a qualitative difference between ATPases and classical GTPases, in the sense that a quantitative relationship between the free-energy of GTP hydrolysis and the appearance of this energy in a different form cannot be directly defined. The significance of the high free energy of hydrolysis is that it allows efficient transition from the active to the inactive state of GTPases in spite of the tendency of the strong interaction of the GTP-bound form with a partner molecule (‘effector’), an essential feature of their mode of action, to stabilize the GTP-bound form.  相似文献   

14.
15.
Ran is an essential GTPase that controls nucleocytoplasmic transport, mitosis, and nuclear envelope formation. These functions are regulated by interaction of Ran with different partners, and by formation of a Ran-GTP gradient emanating from chromatin. Here, we identify a novel level of Ran regulation. We show that Ran is a substrate for p21-activated kinase 4 (PAK4) and that its phosphorylation on serine-135 increases during mitosis. The endogenous phosphorylated Ran and active PAK4 dynamically associate with different components of the microtubule spindle during mitotic progression. A GDP-bound Ran phosphomimetic mutant cannot undergo RCC1-mediated GDP/GTP exchange and cannot induce microtubule asters in mitotic Xenopus egg extracts. Conversely, phosphorylation of GTP-bound Ran facilitates aster nucleation. Finally, phosphorylation of Ran on serine-135 impedes its binding to RCC1 and RanGAP1. Our study suggests that PAK4-mediated phosphorylation of GDP- or GTP-bound Ran regulates the assembly of Ran-dependent complexes on the mitotic spindle.  相似文献   

16.
Homotypic vacuole fusion occurs by sequential priming, docking and fusion reactions. Priming frees the HOPS complex (Vps 11, 16, 18, 33, 39 and 41) to activate Ypt7p for docking. Here we explore the roles of the GDP and GTP states of Ypt7p using Gdi1p (which extracts Ypt7:GDP), Gyp7p (a GTPase-activating protein for Ypt7p:GTP), GTPgammaS or GppNHp (non-hydrolyzable nucleotides), and mutant forms of Ypt7p that favor either GTP or GDP states. GDP-bound Ypt7p on isolated vacuoles can be extracted by Gdi1p, although only the GTP-bound state allows docking. Ypt7p is converted to the GTP-bound state after priming and stably associates with HOPS. Gyp7p can cause Ypt7p to hydrolyze bound GTP to GDP, driving HOPS release and accelerating Gdi1p-mediated release of Ypt7p. Ypt7p extraction does not inhibit the Ca(2+)-triggered cascade that leads to fusion. However, in the absence of Ypt7p, fusion is still sensitive to GTPgammaS and GppNHp, indicating that there is a second specific GTPase that regulates the calcium flux and hence fusion. Thus, two GTPases sequentially govern vacuole docking and fusion.  相似文献   

17.
The GTPase superfamily contains a large number of proteins that function as molecular switches by binding and hydrolyzing GTP molecules. They are localized at various intracellular organelles and control diverse cellular processes. For many GTPases, the lifetime of the activated, GTP-bound state is believed to serve as a timer in determining the activation time of a biological event such as membrane fusion and signal transduction. However, such a timer is intrinsically stochastic due to thermal noise at the level of single GTPase molecules. Here, we describe a mathematical model that shows how a directional GTPase cycle, in a nonequilibrium steady-state driven by GTP hydrolysis, can significantly reduce the variance in the lifetime of an activated GTPase molecule and thereby increase the accuracy and efficiency of the timer. This mechanism, termed kinetic timing, articulates a clear function for the energy consumption in GTPase-controlled biological processes. It provides a rationale for why biological timers utilize a GTP hydrolysis cycle rather than a simple GTP binding–dissociation equilibrium, and why the GTP-bound state is a better timer than the GDP-bound state. It also explains the necessity for the existence of multiple GTP-bound intermediates identified by fluorescence spectroscopy and nuclear magnetic resonance studies.  相似文献   

18.
Cell morphogenesis requires dynamic reorganization of the actin cytoskeleton, a process that is tightly regulated by the Rho family of small GTPases. These GTPases act as molecular switches by shuttling between their inactive GDP-bound and active GTP-bound forms. Here we show that Nir2, a novel protein related to Drosophila retinal degeneration B (RdgB), markedly affects cell morphology through a novel Rho-inhibitory domain (Rid) which resides in its N-terminal region. Rid exhibits sequence homology with the Rho-binding site of formin-homology (FH) proteins and leads to an apparent loss of F-actin staining when ectopically expressed in mammalian cells. We also show that Rid inhibits Rho-mediated stress fiber formation and lysophosphatidic acid-induced RhoA activation. Biochemical studies demonstrated that Nir2, via Rid, preferentially binds to the inactive GDP-bound form of the small GTPase Rho. Microinjection of antibodies against Nir2 into neuronal cells markedly attenuates neurite extension, whereas overexpression of Nir2 in these cells attenuates Rho-mediated neurite retraction. These results implicate Nir2 as a novel regulator of the small GTPase Rho in actin cytoskeleton reorganization and cell morphogenesis.  相似文献   

19.
20.
Zhang B  Zhang Y  Shacter E  Zheng Y 《Biochemistry》2005,44(7):2566-2576
Ras GTPases function as binary switches in the signaling pathways controlling cell growth and differentiation by cycling between the inactive GDP-bound and the active GTP-bound states. They are activated through interaction with guanine nucleotide exchange factors (GEFs) that catalyze the exchange of bound GDP with cytosolic GTP. In a conventional scheme, the biochemical roles of GEFs are postulated as stimulating the release of the bound GDP and stabilizing a nucleotide-free transition state of Ras. Herein we have examined in detail the catalyzed GDP/GTP exchange reaction mechanism by a Ras specific GEF, GRF1. In the absence of free nucleotide, GRF1 could not efficiently stimulate GDP dissociation from Ras. The release of the Ras-bound GDP was dependent upon the concentration and the structure of the incoming nucleotide, in particular, the hydrophobicity of the beta and gamma phosphate groups, suggesting that the GTP binding step is a prerequisite for GDP dissociation, is the rate-limiting step in the GEF reaction, or both. Using a pair of fluorescent guanine nucleotides (N-methylanthraniloyl GDP and 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-GTP) as donor and acceptor probes, we were able to detect fluorescence resonance energy transfer between the incoming GTP and the departing GDP on Ras under controlled kinetic conditions, providing evidence that there may exist a novel intermediate of the GEF-Ras complex that transiently binds to two nucleotides simultaneously. Furthermore, we found that Ras was capable of binding pyrophosphate (PPi) with a dissociation constant of 26 microM and that PPi and GMP, but neither alone, synergistically potentiated the GRF1-stimulated GDP dissociation from Ras. These results strongly support a GEF reaction mechanism by which nucleotide exchange occurs on Ras through a direct GTP/GDP displacement model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号