首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA) and an ERα selective antagonist (MPP dihydrochloride). We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through which E2 participates in anterior pituitary cell renewal during the estrous cycle.  相似文献   

2.
《Steroids》1999,64(1-2):5-13
The focus of our work on rapid actions of estrogens has been on the immuno-identification of a membrane version of the estrogen receptor-α (mERα) and the correlation of the presence of this receptor to the rapid secretion of prolactin in pituitary tumor cells. We demonstrated the mERα by both fluorescence and immuno-enzyme-cytochemistry and with both conventional and confocal microscopy in the cell line GH3/B6 and its sublines. Its presence on cells (including recently subcloned ones) is very heterogenous, unlike the nuclear ERα, which is present in every cell. An impeded ligand (estradiol covalently linked to BSA) binds to mERα and elicits the same response. A total of eight antibodies to ERα recognize mERα, making it likely that the membrane and nuclear proteins are highly related. Immuno-identification techniques have also been used to identify mERα on the MCF-7 human breast cancer cell line. Estradiol at very low concentrations elicits prolactin release from GH3/B6 cells within a few minutes of application. This response is bimodal, with effective concentrations in both the picomolar and nanomolar ranges. Prolactin release is also elicited or inhibited by ERα-specific antibodies. The characteristics of mERα and the membrane receptor for glucocorticoids have many similarities, suggesting that this mode of subcellular location/function alternative might be used by other members of the gene family.  相似文献   

3.
4.
5.
6.
7.
Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis.  相似文献   

8.
In many vertebrates, estrogens are necessary to promote the growth and differentiation of the female reproductive system during development, and have important reproductive roles in both males and females. Medaka (Oryzias latipes) has three estrogen receptor (ER) subtypes, ERα, ERβ1 and ERβ2. To evaluate the three medaka ER (mER)-ligand interactions, we applied the ERE-luciferase reporter assay system to characterize each ER subtype. In this transient transfection assay system using mammalian cells, the mER proteins displayed estrogen-dependent activation. 17β-Estradiol (E(2)) and op'-DDT showed high activation irrespective of ERs. Endosulfan also exhibited activation; with less/no transactivity measured using other pesticides, i.e., heptachlor, carbendazim, deltamethrin, acephate, dimethoate and amitraz. It was generally observed that ERβ2 had higher activation potential than ERα and ERβ1. To understand the molecular mechanism of estrogen action via ER, we also conducted E(2) treatment where we observed a trigger in ERβ2 expression upon E(2) exposure. The present data suggest that ERβ2 is essential for female gonad maintenance. The data were supported by induction of vitellogenin (VTG) mRNA in the liver and reduced VTG receptor mRNA expression in the gonad of both sexes. The present work will provide a basic tool allowing future studies to examine the receptor-ligand interactions and endocrine disrupting mechanisms, and also expands our knowledge of estrogen action on reproductive development in medaka.  相似文献   

9.
10.
Newcastle disease virus (NDV) is endowed with the oncolytic ability to kill tumor cells, while rarely causing side effects in normal cells. Both estrogen receptor α (ERα) and the G protein estrogen receptor (GPER) modulate multiple biological activities in response to estrogen, including apoptosis in breast cancer (BC) cells. Here, we investigated whether NDV‐D90, a novel strain isolated from natural sources in China, promoted apoptosis by modulating the expression of ERα or the GPER in BC cells exposed to 17β‐estradiol (E2). We found that NDV‐D90 significantly killed the tumor cell lines MCF‐7 and BT549 in a time‐ and dose‐dependent manner. We also found that NDV‐D90 exerted its effects on the two cell lines mainly by inducing apoptosis but not necrosis. NDV‐D90 induced apoptosis via the intrinsic and extrinsic signaling pathways in MCF‐7 cells (ER‐positive cells) during E2 exposure not only by disrupting the E2/ERα axis and enhancing GPER expression but also by modulating the expression of several apoptosis‐related proteins through ERα‐and GPER‐independent processes. NDV‐D90 promoted apoptosis via the intrinsic signaling pathway in BT549 cells (ER‐negative cells), possibly by impairing E2‐mediated GPER expression. Furthermore, NDV‐D90 exerted its antitumor effects in vivo by inducing apoptosis. Overall, these results demonstrated that NDV‐D90 promotes apoptosis by differentially modulating the expression of ERα and the GPER in ER‐positive and negative BC cells exposed to estrogen, respectively, and can be utilized as an effective approach to treating BC.  相似文献   

11.
12.
13.
Angiopoietin-1 (Ang-1) is a ligand for Tie-2 receptors and a promoter of angiogenesis. Angiogenesis plays an important role in breast cancer, as it is one of the critical events required for tumors to grow and metastasize. In this study, we investigated the influence of estradiol (E2) on the expression of angiopoietins in breast cancer cell lines. Ang-1 mRNA and protein expressions were significantly higher in estrogen receptor-negative (ERα-) breast cancer cells than in estrogen receptor-positive (ERα+) cells. Exposure of ERα+ cells to E2 resulted in further reductions of Ang-1 levels. In mouse mammary pads inoculated with breast cancer cells, both tumor size and Ang-1 production were significantly lower in ERα+ cell-derived xenografts, as compared to those derived from ERα- cells. Reduction of circulating levels of E2 by ovariectomy eliminated this response. Overall, these results indicate that Ang-1 mRNA and protein expressions: (1) negatively correlate with the level of ERα in breast cancer cell lines; (2) are downregulated by E2 in an ERα dependent manner; and (3) positively correlate with the degree of angiogenesis in vivo. We conclude that Ang-1 is an important modulator of growth and progression of ERα- breast cancers.  相似文献   

14.
15.
16.
17.
Estrogens, acting through estrogen receptor α (ERα), stimulate breast cancer proliferation, making ERα an attractive drug target. Since 384-well format screens for inhibitors of proliferation can be challenging for some cells, inhibition of luciferase-based reporters is often used as a surrogate end point. To identify novel small-molecule inhibitors of 17β-estradiol (E(2))-ERα-stimulated cell proliferation, we established a cell-based screen for inhibitors of E(2)-ERα induction of an estrogen response element (ERE)(3)-luciferase reporter. Seventy-five "hits" were evaluated in tiered follow-up assays to identify where hits failed to progress and evaluate their effectiveness as inhibitors of E(2)-ERα-induced proliferation of breast cancer cells. Only 8 of 75 hits from the luciferase screen inhibited estrogen-induced proliferation of ERα-positive MCF-7 and T47D cells but not control ERα-negative MDA-MB-231 cells. Although 12% of compounds inhibited E(2)-ERα-stimulated proliferation in only one of the ERα-positive cell lines, 40% of compounds were toxic and inhibited growth of all the cell lines, and ~37% exhibited little or no ability to inhibit E(2)-ERα-stimulated cell proliferation. Representative compounds were evaluated in more detail, and a lead ERα inhibitor was identified.  相似文献   

18.
19.
Neuroglobin (NGB), an antiapoptotic protein upregulated by 17β-estradiol (E2), is part of E2/estrogen receptor α (ERα) pathway pointed to preserve cancer cell survival in presence of microenvironmental stressors including chemotherapeutic drugs. Here, the possibility that resveratrol (Res), an anticancer plant polyphenol, could increase the susceptibility of breast cancer cells to paclitaxel (Pacl) by affecting E2/ERα/NGB pathway has been evaluated. In MCF-7 and T47D (ERα-positive), but not in MDA-MB 231 (ERα-negative) nor in SK-N-BE (ERα and ERβ positive), Res decreases NGB levels interfering with E2/ERα-induced NGB upregulation and with E2-induced ERα and protein kinase B phosphorylation. Although Res treatment does not reduce cell viability by itself, this compound potentiates Pacl proapoptotic effects. Notably, the increase of NGB levels by NGB expression vector transfection prevents Pacl or Res/Pacl effects. Taken together, these findings indicate a new Res-based mechanism that acts on tumor cells impairing the E2/ERα/NGB signaling pathways and increasing cancer cell susceptibility to chemotherapeutic agent.  相似文献   

20.
Recent experiments from our laboratory are consistent with the idea that hypothalamic astrocytes are critical components of the central nervous system (CNS) mediated estrogen positive feedback mechanism. The "astrocrine hypothesis" maintains that ovarian estradiol rapidly increases free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis in astrocytes. This hypothalamic neuroprogesterone along with the elevated estrogen from the ovaries allows for the surge release of gonadotropin-releasing hormone (GnRH) that triggers the pituitary luteinizing hormone (LH) surge. A narrow range of estradiol stimulated progesterone production supports an "off-on-off" mechanism regulating the transition from estrogen negative feedback to estrogen positive feedback, and back again. The rapidity of the [Ca(2+)](i) response and progesterone synthesis support a non-genomic, membrane-initiated signaling mechanism. In hypothalamic astrocytes, membrane-associated estrogen receptors (mERs) signal through transactivation of the metabotropic glutamate receptor type 1a (mGluR1a), implying that astrocytic function is influenced by surrounding glutamatergic nerve terminals. Although other putative mERs, such as mERβ, STX-activated mER-Gα(q), and G protein-coupled receptor 30 (GPR30), are present and participate in membrane-mediated signaling, their influence in reproduction is still obscure since female reproduction be it estrogen positive feedback or lordosis behavior requires mERα. The astrocrine hypothesis is also consistent with the well-known sexual dimorphism of estrogen positive feedback. In rodents, only post-pubertal females exhibit this positive feedback. Hypothalamic astrocytes cultured from females, but not males, responded to estradiol by increasing progesterone synthesis. Estrogen autoregulates its own signaling by regulating levels of mERα in the plasma membrane of female astrocytes. In male astrocytes, the estradiol-induced increase in mERα was attenuated, suggesting that membrane-initiated estradiol signaling (MIES) would also be blunted. Indeed, estradiol induced [Ca(2+)](i) release in male astrocytes, but not to levels required to stimulate progesterone synthesis. Investigation of this sexual differentiation was performed using hypothalamic astrocytes from post-pubertal four core genotype (FCG) mice. In this model, genetic sex is uncoupled from gonadal sex. We demonstrated that animals that developed testes (XYM and XXM) lacked estrogen positive feedback, strongly suggesting that the sexual differentiation of progesterone synthesis is driven by the sex steroid environment during early development. This article is part of a Special Issue entitled 'Neurosteroids'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号