首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Strong CD4(+) and CD8(+) T cell responses are considered important immune components for controlling HIV infection, and their priming may be central to an effective HIV vaccine. We describe in this study an approach by which multiple CD4(+) and CD8(+) T cell epitopes are processed and presented from an exogenously added HIV-1 Gag-p24 peptide of 32 aa complexed to heat shock protein (HSP) gp96. CD8(+) T cell recognition of the HSP/peptide complex, but not the peptide alone, was inhibited by brefeldin A, suggesting an endoplasmic reticulum-dependent pathway. This is the first report to describe efficient processing and simultaneous presentation of overlapping class I- and class II-restricted epitopes from the same extracellularly added precursor peptide complexed to HSP. Given previous reports of the strong immunogenicity of HSP/peptide complexes, the present data suggest that HSP-complexed peptides containing multiple MHC class I- and class II-restricted epitopes represent potential vaccine candidates for HIV and other viral infections suitable to induce effective CTL memory by simultaneously providing CD4 T cell help.  相似文献   

2.
Major histocompatibility complex class II (MHC II) molecules are expressed on the surface of antigen-presenting cells and display short bound peptide fragments derived from self- and nonself antigens. These peptide-MHC complexes function to maintain immunological tolerance in the case of self-antigens and initiate the CD4(+) T cell response in the case of foreign proteins. Here we report the application of LC-MS/MS analysis to identify MHC II peptides derived from endogenous proteins expressed in freshly isolated murine splenic DCs. The cell number was enriched in vivo upon treatment with Flt3L-B16 melanoma cells. In a typical experiment, starting with about 5 × 10(8) splenic DCs, we were able to reliably identify a repertoire of over 100 MHC II peptides originating from about 55 proteins localized in membrane (23%), intracellular (26%), endolysosomal (12%), nuclear (14%), and extracellular (25%) compartments. Using synthetic isotopically labeled peptides corresponding to the sequences of representative bound MHC II peptides, we quantified by LC-MS relative peptide abundance. In a single experiment, peptides were detected in a wide concentration range spanning from 2.5 fmol/μL to 12 pmol/μL or from approximately 13 to 2 × 10(5) copies per DC. These peptides were found in similar amounts on B cells where we detected about 80 peptides originating from 55 proteins distributed homogenously within the same cellular compartments as in DCs. About 90 different binding motifs predicted by the epitope prediction algorithm were found within the sequences of the identified MHC II peptides. These results set a foundation for future studies to quantitatively investigate the MHC II repertoire on DCs generated under different immunization conditions.  相似文献   

3.
P Chong  C Sia  M Sydor  M Klein 《FEBS letters》1990,264(2):231-234
Recent studies indicate that the gag gene products may play a crucial role in the immune response against HIV infection since clinical progression to AIDS is associated with a reduction in the level of circulating antibodies to gag p24 and antibodies raised against p17 peptide can inhibit HIV1 infection in vitro. Using conventional structure prediction algorithms for T-cell and B-cell epitopes, we have selected and chemically synthesized several gag peptides. In particular, an unconjugated HIV1-p24 peptide containing both B- and T-cell epitopes in tandem plus Freund's adjuvant induced a strong antibody response in both mice and rabbits against p24 and its precursor p55 as judged by immunoblotting. In addition, the peptide presented in the appropriate MHC context was shown to be highly stimulatory for p24 specific murine T-cell clones.  相似文献   

4.
Mice that were intranasally vaccinated with live or dead Chlamydia muridarum with or without CpG-containing oligodeoxynucleotide 1862 elicited widely disparate levels of protective immunity to genital tract challenge. We found that the frequency of multifunctional T cells coexpressing IFN-γ and TNF-α with or without IL-2 induced by live C. muridarum most accurately correlated with the pattern of protection against C. muridarum genital tract infection, suggesting that IFN-γ(+)-producing CD4(+) T cells that highly coexpress TNF-α may be the optimal effector cells for protective immunity. We also used an immunoproteomic approach to analyze MHC class II-bound peptides eluted from dendritic cells (DCs) that were pulsed with live or dead C. muridarum elementary bodies (EBs). We found that DCs pulsed with live EBs presented 45 MHC class II C. muridarum peptides mapping to 13 proteins. In contrast, DCs pulsed with dead EBs presented only six MHC class II C. muridarum peptides mapping to three proteins. Only two epitopes were shared in common between the live and dead EB-pulsed groups. This study provides insights into the role of Ag presentation and cytokine secretion patterns of CD4(+) T effector cells that correlate with protective immunity elicited by live and dead C. muridarum. These insights should prove useful for improving vaccine design for Chlamydia trachomatis.  相似文献   

5.
6.
CD8+ T cells play an important role in early HIV infection. However, HIV has the capacity to avoid specific CTL responses due to a high rate of mutation under selection pressure. Although the HIV proteins, gag and pol, are relatively conserved, these sequences generate low-affinity MHC-associated epitopes that are poorly immunogenic. Here, we applied an approach that enhanced the immunogenicity of low-affinity HLA-A2.1-binding peptides. The first position with tyrosine (P1Y) substitution enhanced the affinity of HLA-A2.1-associated peptides without altering their antigenic specificity. More importantly, P1Y variants efficiently stimulated in vivo native peptide-specific CTL that also recognized the corresponding naturally processed epitope. The potential to generate CTL against any low-affinity HLA-A2.1-associated peptide provides us with the necessary technique for identification of virus cryptic epitopes for development of peptide-based immunotherapy. Therefore, identification and modification of the cryptic epitopes of gal and pol provides promising candidates for HIV immunotherapy dependent upon efficient presentation by virus cells. Furthermore, this may be a breakthrough that overcomes the obstacle of immune escape caused by high rates of mutation. In this study, bioinformatics analysis was used to predict six low-affinity cryptic HIV gag and pol epitopes presented by HLA-A*0201. A HIV compound multi-CTL epitope gene was constructed comprising the gene encoding the modified cryptic epitope and the HIV p24 antigen, which induced a strong CD8+ T cell immune response regardless of the mutation. This approach represents a novel strategy for the development of safe and effective HIV prophylactic and therapeutic vaccines.  相似文献   

7.
Diagnostic reagents for detection of human immunodeficiency virus (HIV) exposure with improved reliability may be provided by viral encoded proteins produced by recombinant DNA techniques or by synthetic peptides corresponding to appropriate viral epitopes. We have expressed at high levels in E. coli a gag gene segment corresponding to approximately 97% of the p55 gag precursor protein, as well as a novel gag/env fusion protein that contains antigenic determinants in common with gag p24, env gp41, and env gp120. The gag and gag/env proteins were purified from insoluble inclusion bodies by sequential extraction with increasing concentrations of urea. These components were tested for reactivity with antisera to HIV proteins and peptides. We have also chemically synthesized a peptide corresponding to env residues 578-608, representing a portion of env gp41. The final preparation of gag and gag/env proteins in 8 M urea reacted with sheep anti-HTLV-III p24 gag antibodies and acquired immune deficiency syndrome (AIDS) patient sera. The gag/env fusion protein also reacted with rabbit anti-HIV env 500-511 peptide antibody. Both recombinant proteins and the env peptide were suitable as reagents for evaluation of serum samples by enzyme-linked immunosorbent assay (ELISA). Results of ELISA assays utilizing the recombinant viral proteins and synthetic peptide were in good agreement with results obtained using disrupted virus as antigen in ELISA assays and immunoblotting.  相似文献   

8.
The challenge in observing de novo virus production in human immunodeficiency virus (HIV)-infected dendritic cells (DCs) is the lack of resolution between cytosolic immature and endocytic mature HIV gag protein. To track HIV production, we developed an infectious HIV construct bearing a diothiol-resistant tetracysteine motif (dTCM) at the C terminus of HIV p17 matrix within the HIV gag protein. Using this construct in combination with biarsenical dyes, we observed restricted staining of the dTCM to de novo-synthesized uncleaved gag in the DC cytosol. Co-staining with HIV gag antibodies, reactive to either p17 matrix or p24 capsid, preferentially stained mature virions and thus allowed us to track the virus at distinct stages of its life cycle within DCs and upon transfer to neighboring DCs or T cells. Thus, in staining HIV gag with biarsenical dye system in situ, we characterized a replication-competent virus capable of being tracked preferentially within infected leukocytes and observed in detail the dynamic nature of the HIV production and transfer in primary DCs.  相似文献   

9.
Dendritic cells (DCs) initiate primary immune responses by presenting pathogen-derived antigens in association with major histocompatibility Class II molecules (MHC II) to T cells. In DCs, MHC II is constitutively synthesized and loaded at endosomes with peptides from hydrolyzed endogenous proteins or exogenously acquired antigens. Whether peptide loaded MHC II (MHC II-p) is subsequently recruited to and stably expressed at the plasma membrane or degraded in lysosomes is determined by the status of the DC. In immature DCs, MHC II-p is ubiquitinated after peptide loading, driving its sorting to the luminal vesicles of multivesicular bodies. These luminal vesicles, and the MHC II-p they carry, are delivered to lysosomes for degradation. MHC II-p is inefficiently ubiquitinated in DCs that are activated by pathogens or inflammatory stimuli, thus allowing its transfer to and stable expression at the plasma membrane.  相似文献   

10.
Chlamydia infections cause substantial morbidity worldwide and effective prevention will depend on a vaccine. Since Chlamydia immunity is T cell-mediated, a major impediment to developing a molecular vaccine has been the difficulty in identifying relevant T cell Ags. In this study, we used a combination of affinity chromatography and tandem mass spectrometry to identify 13 Chlamydia peptides among 331 self-peptides presented by MHC class II (I-A(b)) molecules from bone marrow-derived murine dendritic cells infected with Chlamydia muridarum. These MHC class II-bound peptides were recognized by Chlamydia-specific CD4 T cells harvested from immune mice and adoptive transfer of dendritic cells pulsed ex vivo with the peptides partially protected mice against intranasal and genital tract Chlamydia infection. The results provide evidence for lead vaccine candidates for a T cell-based subunit molecular vaccine against Chlamydia infection suitable for human study.  相似文献   

11.
Previous studies have shown that the DM-deficient cell line, T2-I-A(b), is very inefficient at presenting toxic shock syndrome toxin 1 (TSST-1) to T cells, suggesting that I-A(b)-associated peptides play an essential role in the presentation of this superantigen. Consistent with this, the loading of an I-A(b)-binding peptide, staphylococcal enterotoxin B 121-136, onto T2-I-A(b) cells enhanced TSST-1 presentation >1000-fold. However, despite extensive screening, no other peptides have been identified that significantly promote TSST-1 presentation. In addition, the peptide effect on TSST-1 presentation has been demonstrated only in the context of the tumor cell line T2-I-A(b). Here we show that peptides that do not promote TSST-1 presentation can be converted into "promoting" peptides by the progressive truncation of C-terminal residues. These studies result in the identification of two peptides derived from IgGV heavy chain and I-Ealpha proteins that are extremely strong promoters of TSST-1 presentation (47,500- and 12,000-fold, respectively). We have also developed a system to examine the role of MHC class II-associated peptides in superantigen presentation using splenic APC taken directly ex vivo. The data confirmed that the length of the MHC class II-bound peptide plays a critical role in the presentation of TSST-1 by splenic APC and showed that different subpopulations of APC are equally peptide dependent in TSST-1 presentation. Finally, we demonstrated that the presentation of staphylococcal enterotoxin A, like TSST-1, is peptide dependent, whereas staphylococcal enterotoxin B presentation is peptide independent.  相似文献   

12.
Therapeutic treatment with hu14.18-IL-2 immunocytokine (IC) or Flt3-L (FL) protein is initially effective at resolving established intradermal NXS2 neuroblastoma tumors in mice. However, many treated animals develop recurrent disease. We previously found that tumors recurring following natural killer (NK) mediated IC treatment show augmented MHC class I expression, while the tumors that recurred following T cell dependent Flt3-L treatment exhibited decreased MHC class I expression. We hypothesized that this divergent MHC modulation on recurrent tumors was due to therapy-specific immunoediting. We further postulated that combining IC and Flt3-L treatments might decrease the likelihood of recurrent disease by preventing MHC modulation as a mechanism for immune escape. We now report that combinatorial treatment of FL plus hu14.18-IL-2 IC provides greater antitumor benefit than treatment with either alone, suppressing development of recurrent disease. We administered FL by gene therapy using a clinically relevant approach: hydrodynamic limb vein (HLV) delivery of DNA for transgene expression by myofibers. Delivery of FL DNA by HLV injection in mice resulted in systemic expression of >10 ng/ml of FL in blood at day 3, and promoted up to a fourfold and tenfold increase in splenic NK and dendritic cells (DCs), respectively. Furthermore, the combination of FL gene therapy plus suboptimal IC treatment induced a greater expansion in the absolute number of splenic NK and DCs than achieved by individual component treatments. Mice that received combined FL gene therapy plus IC exhibited complete and durable resolution of established NXS2 tumors, and demonstrated protection from subsequent rechallenge with NXS2 tumor.  相似文献   

13.
There is an increasing body of evidence suggesting that the transfer of preformed MHC class I:peptide complexes between a virus-infected cell and an uninfected APC, termed cross-dressing, represents an important mechanism of Ag presentation to CD8(+) T cells in host defense. However, although it has been shown that memory CD8(+) T cells can be activated by uninfected dendritic cells (DCs) cross-dressed by Ag from virus-infected parenchymal cells, it is unknown whether conditions exist during virus infection in which naive CD8(+) T cells are primed and differentiate to cytolytic effectors through cross-dressing, and indeed which DC subset would be responsible. In this study, we determine whether the transfer of MHC class I:peptide complexes between infected and uninfected murine DC plays a role in CD8(+) T cell priming to viral Ags in vivo. We show that MHC class I:peptide complexes from peptide-pulsed or virus-infected DCs are indeed acquired by splenic CD8α(-) DCs in vivo. Furthermore, the acquired MHC class I:peptide complexes are functional in that they induced Ag-specific CD8(+) T cell effectors with cytolytic function. As CD8α(-) DCs are poor cross-presenters, this may represent the main mechanism by which CD8α(-) DCs present exogenously encountered Ag to CD8(+) T cells. The sharing of Ag as preformed MHC class I:peptide complexes between infected and uninfected DCs without the restraints of Ag processing may have evolved to accurately amplify the response and also engage multiple DC subsets critical in the generation of strong antiviral immunity.  相似文献   

14.
目的 预测与鉴定烟曲霉抗原Asp f16的HLA-A *0201限制性CD8+细胞毒性T细胞(CTL)抗原表位.方法 以国人常见的HLA-A*0201位点为靶点,依据生物信息学软件扫描烟曲霉特异性抗原Asp f16的全部427个氨基酸序列.使用HLA-A *0201转基因小鼠制备骨髓来源的树突状细胞(DC)和CTL.流式细胞仪技术检测DC表面MHC Ⅱ类抗原,CD80,CD86和CD11c的表达来验证其是否成熟.ELISPOT试验检测烟曲霉抗原多肽特异性CTL产生的细胞因子IFN-γ.四聚体(Tetramer)试验证实烟曲霉特异性CTL与抗原肽,HLA-A*0201分子复合体的亲和性.结果 根据与MHC I类分子结合的半衰期评分,选择了3个HLA-A*0201限制性抗原表位.流式细胞仪分析示成熟DC高表达HLA Ⅱ类抗原,CD80,CD86和CD11c.Tetramer试验证实烟曲霉特异性T细胞受体与抗原肽,HLA-A*0201分子复合体的高亲和性.ELISPOT实验结果 表明烟曲霉抗原肽体外可以活化CD8+CTL,被负载了抗原肽的DC刺激活化后可以产生IFN-γ.结论 本研究成功鉴定烟曲霉抗原Asp f16的HLA-A*0201限制性CD8+CTL表位,可作为疫苗设计的候选表位,为进一步研发新型抗烟曲霉疫苗提供参考.  相似文献   

15.
Activation of T-helper cells is dependent upon the appropriate presentation of antigen-derived peptides on MHC class II molecules expressed on antigen presenting cells. In the current study we explored the repertoire of peptides presented on MHC class II molecules on human monocyte derived dendritic cells (moDCs) from four HLA-typed healthy donors. MHC class II-bound peptides could be routinely recovered from small cultures containing 5 × 10(6) cells. A fraction of the identified peptides were derived from proteins localized in the plasma membrane, endosomes, and lysosomes, but the majority of peptides that were presented on MHC class II originate from other organelles. Subsequently, we studied the antigen-specific peptide repertoire after endocytosis of a soluble antigen. Blood coagulation factor VIII (FVIII) was chosen as the antigen since our current knowledge on MHC class II presented peptides derived from this immunogenic therapeutic protein is limited. Analysis of the total repertoire of MHC class II-associated peptides revealed that per individual sample 20-50 FVIII-derived peptides were presented on FVIII-pulsed moDCs. Repertoires of FVIII-derived peptides eluted from moDCs derived from a panel of four HLA typed donors revealed that some MHC class II-presented FVIII peptides were presented by multiple donors, whereas the presentation of other FVIII peptides was donor-specific. In total 32 different core peptides were presented on FVIII-pulsed moDCs from four HLA-typed donors. Together our findings provide an unbiased approach to identify peptides that are presented by MHC class II on antigen-loaded moDCs from individual donors.  相似文献   

16.
Live-vector-based human immunodeficiency virus (HIV) vaccines are an integral part of a number of HIV vaccine regimens currently under evaluation. Live vectors that carry an intact gag gene are capable of eliciting HIV pseudovirion particle formation from infected host cells. The impact of pseudovirion particle formation on the immune response generated by live HIV vaccine vectors has not been established. In this study, a canarypox HIV vaccine candidate vector expressing HIV gag and env genes, vCP205, was modified by the introduction of a glycine-to-alanine coding change in the N-terminal myristylation site of gag to create Myr- vCP205. This substitution effectively eliminated particle formation without altering the level of protein production. vCP205 and Myr- vCP205 were then directly compared for the ability to induce HIV-specific immune responses in mice. The particle-competent vector vCP205 elicited higher levels of CD8+ T-cell responses, as indicated by gamma interferon enzyme-linked immunospot (ELISPOT) assay and intracellular cytokine staining. Humoral responses to Gag and Env were also markedly higher from animals immunized with the particle-competent vector. Furthermore, HIV-specific CD4+ T-cell responses were greater among animals immunized with the particle-competent vector. Using a human dendritic cell model of antigen presentation in vitro, vCP205 generated greater ELISPOT responses than Myr- vCP205. These results demonstrate that pseudovirion particle production by live-vector HIV vaccines enhances HIV-specific cellular and humoral immune responses.  相似文献   

17.
The role of cellular immunity in the establishment and progression of immunosuppressive lentivirus infection remains equivocal. To develop a model system with which these aspects of the host immune response can be studied experimentally, we examined the response of cats to a hybrid peptide containing predicted T-and B-cell epitopes from the gag and env genes of feline immunodeficiency virus (FIV). Cats were immunized with an unmodified 17-residue peptide incorporating residues 196 to 208 (from gag capsid protein p24) and 395 to 398 (from env glycoprotein gp120) of the FIV Glasgow-8 strain by using Quil A as an adjuvant. Virus-specific lymphocytotoxicity was measured by chromium-51 release assays. The target cells were autologous or allogeneic skin fibroblasts either infected with recombinant FIV gag vaccinia virus or pulsed with FIV peptides. Effector cells were either fresh peripheral blood mononuclear cells or T-cell lines stimulated with FIV peptides in vitro. Cytotoxic effector cells from immunized cats lysed autologous, but not allogeneic, target cells when they were either infected with recombinant FIV gag vaccinia virus or pulsed with synthetic peptides comprising residues 196 to 205 or 200 to 208 plus 395. Depletion of CD8+ T cells, from the effector cell population abrogated the lymphocytotoxicity. Immunized cats developed an antibody response to the 17-residue peptide immunogen and to recombinant p24. However, no antibodies which recognized smaller constituent peptides could be detected. This response correlated with peptide-induced T-cell proliferation in vitro. This study demonstrates that cytotoxic T lymphocytes specific for FIV can be induced following immunization with an unmodified short synthetic peptide and defines a system in which the protective or pathological role of such responses can be examined.  相似文献   

18.
Radiation is generally considered to be an immunosuppressive agent that acts by killing radiosensitive lymphocytes. In this study, we demonstrate the noncytotoxic effects of ionizing radiation on MHC class I Ag presentation by bone marrow-derived dendritic cells (DCs) that have divergent consequences depending upon whether peptides are endogenously processed and loaded onto MHC class I molecules or are added exogenously. The endogenous pathway was examined using C57BL/6 murine DCs transduced with adenovirus to express the human melanoma/melanocyte Ag recognized by T cells (AdVMART1). Prior irradiation abrogated the ability of AdVMART1-transduced DCs to induce MART-1-specific T cell responses following their injection into mice. The ability of these same DCs to generate protective immunity against B16 melanoma, which expresses murine MART-1, was also abrogated by radiation. Failure of AdVMART1-transduced DCs to generate antitumor immunity following irradiation was not due to cytotoxicity or to radiation-induced block in DC maturation or loss in expression of MHC class I or costimulatory molecules. Expression of some of these molecules was affected, but because irradiation actually enhanced the ability of DCs to generate lymphocyte responses to the peptide MART-1(27-35) that is immunodominant in the context of HLA-A2.1, they were unlikely to be critical. The increase in lymphocyte reactivity generated by irradiated DCs pulsed with MART-1(27-35) also protected mice against growth of B16-A2/K(b) tumors in HLA-A2.1/K(b) transgenic mice. Taken together, these results suggest that radiation modulates MHC class I-mediated antitumor immunity by functionally affecting DC Ag presentation pathways.  相似文献   

19.
 Comparison of peptides eluted from human class I and class II major histocompatibility complex (MHC) molecules and the proteins from which they are derived (source proteins) revealed that class I MHC bind peptides derived from proteins that are highly conserved, hydrophilic, and universally expressed, while the peptides themselves are hydrophobic and even more conserved than their source proteins. In contrast, source proteins for class II-bound peptides were not significantly more conserved than a random sample of proteins. Class II-bound peptides were generally more conserved than their source proteins but were significantly less conserved than class I-bound peptides. The characteristics of class I-bound peptides can probably be explained by the selectivity of processing and transport of peptides for binding by class I, while the relative lack of selectivity of peptide binding for class II may explain the high incidence of autoimmune diseases associated with alleles of these molecules. Received: 17 May 1999 / Revised: 5 August 1999  相似文献   

20.
Adoptive transfer of autologous dendritic cells (DCs) loaded with tumor-associated CD4 and CD8 T cell epitopes represents a promising avenue for the immunotherapy of cancer. In an effort to increase the loading of therapeutic synthetic peptides on MHC II molecules, we used a mutant of HLA-DM (DMY) devoid of its lysosomal sorting motif and that accumulates at the cell surface. Transfection of DMY into HLA-DR(+) cells resulted in increased loading of the exogenously supplied HA(307-318) peptide, as well as increased stimulation of HA-specific T cells. Also, on transduction in mouse and human DCs, DMY increased loading of HEL(48-61) and of the tumor Ag-derived gp100(174-190) peptides, respectively. Interestingly, expression of DMY at the surface of APCs favored Th1 differentiation over Th2. Finally, we found that DMY(-) and DMY(+) mouse APCs differentially stimulated T cell hybridomas sensitive to the fine conformation of peptide-MHC II complexes. Taken together, our results suggest that the overexpression of HLA-DMY at the plasma membrane of DCs may improve quantitatively, but also qualitatively, the presentation of CD4 T cell epitopes in cellular vaccine therapies for cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号