首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
DNA的精确复制和遗传对维持基因组稳定性有重要作用。DNA双链断裂损伤可能诱导细胞凋亡和染色质重排,在肿瘤的发生发展过程中发挥作用。53BP1是DNA双链断裂修复中的重要调节蛋白质之一,对调控损伤修复平衡和维持基因组稳定性起着重要作用。本文主要对53BP1的结构、生物学功能、信号通路、分子机制和翻译后修饰做一浅显的总结和展望,希望能为53BP1的深入研究提供一些理论基础。  相似文献   

4.
Although PTIP is implicated in the DNA damage response, through interactions with 53BP1, the function of PTIP in the DNA damage response remain elusive. Here, we show that RNF8 controls DNA damage-induced nuclear foci formation of PTIP, which in turn regulates 53BP1 localization to the DNA damage sites. In addition, SMC1, a substrate of ATM, could not be phosphorylated at the DNA damage sites in the absence of PTIP. The PTIP-dependent pathway is important for DNA double strand breaks repair and DNA damage-induced intra-S phase checkpoint activation. Taken together, these results suggest that the role of PTIP in the DNA damage response is downstream of RNF8 and upstream of 53BP1. Thus, PTIP regulates 53BP1-dependent signaling pathway following DNA damage.The DNA damage response pathways are signal transduction pathways with DNA damage sensors, mediators, and effectors, which are essential for maintaining genomic stability (13). Following DNA double strand breaks, histone H2AX at the DNA damage sites is rapidly phosphorylated by ATM/ATR/DNAPK (410), a family homologous to phosphoinositide 3-kinases (11, 12). Subsequently, phospho-H2AX (γH2AX) provides the platform for accumulation of a larger group of DNA damage response factors, such as MDC1, BRCA1, 53BP1, and the MRE11·RAD50·NBS1 complex (13, 14), at the DNA damage sites. Translocalization of these proteins to the DNA double strand breaks (DSBs)3 facilitates DNA damage checkpoint activation and enhances the efficiency of DNA damage repair (14, 15).Recently, PTIP (Pax2 transactivation domain-interacting protein, or Paxip) has been identified as a DNA damage response protein and is required for cell survival when exposed to ionizing radiation (IR) (1, 1618). PTIP is a 1069-amino acid nuclear protein and has been originally identified in a yeast two-hybrid screening as a partner of Pax2 (19). Genetic deletion of the PTIP gene in mice leads to early embryonic lethality at embryonic day 8.5, suggesting that PTIP is essential for early embryonic development (20). Structurally, PTIP contains six tandem BRCT (BRCA1 carboxyl-terminal) domains (1618, 21). The BRCT domain is a phospho-group binding domain that mediates protein-protein interactions (17, 22, 23). Interestingly, the BRCT domain has been found in a large number of proteins involved in the cellular response to DNA damages, such as BRCA1, MDC1, and 53BP1 (7, 2429). Like other BRCT domain-containing proteins, upon exposure to IR, PTIP forms nuclear foci at the DSBs, which is dependent on its BRCT domains (1618). By protein affinity purification, PTIP has been found in two large complexes. One includes the histone H3K4 methyltransferase ALR and its associated cofactors, the other contains DNA damage response proteins, including 53BP1 and SMC1 (30, 31). Further experiments have revealed that DNA damage enhances the interaction between PTIP and 53BP1 (18, 31).To elucidate the DNA damage response pathways, we have examined the upstream and downstream partners of PTIP. Here, we report that PTIP is downstream of RNF8 and upstream of 53BP1 in response to DNA damage. Moreover, PTIP and 53BP1 are required for the phospho-ATM association with the chromatin, which phosphorylates SMC1 at the DSBs. This PTIP-dependent pathway is involved in DSBs repair.  相似文献   

5.
53BP1 is a key component of the genome surveillance network activated by DNA double strand breaks (DSBs). Despite its known accumulation at the DSB sites, the spatiotemporal aspects of 53BP1 interaction with DSBs and the role of other DSB regulators in this process remain unclear. Here, we used real-time microscopy to study the DSB-induced redistribution of 53BP1 in living cells. We show that within minutes after DNA damage, 53BP1 becomes progressively, yet transiently, immobilized around the DSB-flanking chromatin. Quantitative imaging of single cells revealed that the assembly of 53BP1 at DSBs significantly lagged behind Mdc1/NFBD1, another DSB-interacting checkpoint mediator. Furthermore, short interfering RNA-mediated ablation of Mdc1/NFBD1 drastically impaired 53BP1 redistribution to DSBs and triggered premature dissociation of 53BP1 from these regions. Collectively, these in vivo measurements identify Mdc1/NFBD1 as a key upstream determinant of 53BP1's interaction with DSBs from its dynamic assembly at the DSB sites through sustained retention within the DSB-flanking chromatin up to the recovery from the checkpoint.  相似文献   

6.
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. Here we demonstrated that the budding yeast Saccharomyces cerevisiae type I survivors derived from telomerase-deficient cells were hypersensitive to DNA damaging agents. Assays to track telomere lengths and drug sensitivity of telomerase-deficient cells from spore colonies to survivors suggested a correlation between telomere shortening and bleomycin sensitivity. Our genetic studies demonstrated that this sensitivity depends on Mec1, which signals checkpoint activation, leading to prolonged cell-cycle arrest in senescent budding yeasts. Moreover, we also observed that when cells equipped with short telomeres, recruitments of homologous recombination proteins, Rad51 and Rad52, were reduced at an HO-endonuclease-catalyzed double-strand break (DSB), while their associations were increased at chromosome ends. These results suggested that the sensitive phenotype may be attributed to the sequestration of repair proteins to compromised telomeres, thus limiting the repair capacity at bona fide DSB sites.  相似文献   

7.
We have screened for mutations of the Saccharomyces cerevisiae RAD52 gene which confer a temperature-sensitive (ts) phenotype with respect to either the repair of DNA lesions caused by methyl methanesulfonate (MMS) or the recombination of an intrachromosomal recombination reporter. We were readily able to isolate alleles ts for the repair of lesions caused by MMS but were unable to find alleles with a severe ts deficiency in intrachromosomal recombination. We extensively characterized four strains conferring ts growth on MMS agar. These strains also exhibit ts survival when exposed to γ-radiation or when the HO endonuclease is constitutively expressed. Although none of the four alleles confers a severe ts defect in intrachromosomal recombination, two confer significant defects in tests of mitotic, interchromosomal recombination carried out in diploid strains. The mutant diploids sporulate, but the two strains with defects in interchromosomal recombination have reduced spore viability. Meiotic recombination is not depressed in the two diploids with reduced spore viability. Thus, in the two strains with reduced spore viability, defects in mitotic and meiotic recombination do not correlate. Sequence analysis revealed that in three of the four ts alleles the causative mutations are in the first one-third of the open reading frame while the fourth is in the C-terminal third.  相似文献   

8.
Rad52 plays a pivotal role in double-strand break (DSB) repair and genetic recombination in Saccharomyces cerevisiae, where mutation of this gene leads to extreme X-ray sensitivity and defective recombination. Yeast Rad51 and Rad52 interact, as do their human homologues, which stimulates Rad51-mediated DNA strand exchange in vitro, suggesting that Rad51 and Rad52 act cooperatively. To define the role of Rad52 in vertebrates, we generated RAD52−/− mutants of the chicken B-cell line DT40. Surprisingly, RAD52−/− cells were not hypersensitive to DNA damages induced by γ-irradiation, methyl methanesulfonate, or cis-platinum(II)diammine dichloride (cisplatin). Intrachromosomal recombination, measured by immunoglobulin gene conversion, and radiation-induced Rad51 nuclear focus formation, which is a putative intermediate step during recombinational repair, occurred as frequently in RAD52−/− cells as in wild-type cells. Targeted integration frequencies, however, were consistently reduced in RAD52−/− cells, showing a clear role for Rad52 in genetic recombination. These findings reveal striking differences between S. cerevisiae and vertebrates in the functions of RAD51 and RAD52.  相似文献   

9.
The Complexity of the Interaction between Rad52 and Srs2   总被引:2,自引:0,他引:2       下载免费PDF全文
M. D. KAYTOR  M. NGUYEN    D. M. LIVINGSTON 《Genetics》1995,140(4):1441-1442
  相似文献   

10.
In male germ cells the repair of DNA double strand breaks (DSBs) differs from that described for somatic cell lines. Irradiation induced immunofluorescent foci (IRIF's) signifying a double strand DNA breaks, were followed in spermatogenic cells up to 16 h after the insult. Foci were characterised for Mdc1, 53BP1 and Rad51 that always were expressed in conjecture with gamma-H2AX. Subsequent spermatogenic cell types were found to have different repair proteins. In early germ cells up to the start of meiotic prophase, i.e. in spermatogonia and preleptotene spermatocytes, 53BP1 and Rad51 are available but no Mdc1 is expressed in these cells before and after irradiation. The latter might explain the radiosensitivity of spermatogonia. Spermatocytes from shortly after premeiotic S-phase till pachytene in epithelial stage IV/V express Mdc1 and Rad51 but no 53BP1 which has no role in recombination involved repair during the early meiotic prophase. Mdc1 is required during this period as in Mdc1 deficient mice all spermatocytes enter apoptosis in epithelial stage IV when they should start mid-pachytene phase of the meiotic prophase. From stage IV mid pachytene spermatocytes to round spermatids, Mdc1 and 53BP1 are expressed while Rad51 is no longer expressed in the haploid round spermatids. Quantifying foci numbers of gamma-H2AX, Mdc1 and 53BP1 at various time points after irradiation revealed a 70% reduction after 16 h in pachytene and diplotene spermatocytes and round spermatids. Although the DSB repair efficiency is higher then in spermatogonia where only a 40% reduction was found, it still does not compare to somatic cell lines where a 70% reduction occurs in 2 h. Taken together, DNA DSBs repair proteins differ for the various types of spermatogenic cells, no germ cell type possessing the complete set. This likely leads to a compromised efficiency relative to somatic cell lines. From the evolutionary point of view it may be an advantage when germ cells die from DNA damage rather than risk the acquisition of transmittable errors made during the repair process.  相似文献   

11.
12.
R. H. Schiestl  S. Prakash    L. Prakash 《Genetics》1990,124(4):817-831
rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.  相似文献   

13.
Coordinated response of mammalian Rad51 and Rad52 to DNA damage   总被引:3,自引:0,他引:3       下载免费PDF全文
Liu Y  Maizels N 《EMBO reports》2000,1(1):85-90
Biochemical analysis has shown that mammalian Rad51 and Rad52 interact and synergize in DNA recombination reactions in vitro, but these proteins have not been shown to function together in response to DNA damage in vivo. By analysis of murine cells expressing murine Rad52 tagged with green fluorescent protein (GFP)–Rad52, we now show that DNA damage causes Rad51 and GFP–Rad52 to colocalize in distinct nuclear foci. Cells expressing GFP–Rad52 show both increased survival and an increased number of Rad51 foci, raising the possibility that Rad52 is limiting for repair. These observations provide evidence of coordinated function of Rad51 and Rad52 in vivo and support the hypothesis that Rad52 plays an important role in the DNA damage response in mammalian cells.  相似文献   

14.
15.
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.  相似文献   

16.
Slx1 and Slx4 are subunits of a structure-specific DNA endonuclease that is found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other eukaryotic species. It is thought to initiate recombination events or process recombination structures that occur during the replication of the tandem repeats of the ribosomal DNA (rDNA) locus. Here, we present evidence that fission yeast Slx1-Slx4 initiates homologous recombination events in the rDNA repeats that are processed by a mechanism that requires Rad22 (Rad52 homologue) but not Rhp51 (Rad51 homologue). Slx1 is required to generate approximately 50% of the spontaneous Rad22 DNA repair foci that occur in cycling cells. Most of these foci colocalize with the nucleolus, which contains the rDNA repeats. The increased fork pausing at the replication fork barriers in the rDNA repeats in a strain that lacks Rqh1 DNA helicase is further increased by expression of a dominant negative form of Slx1. These data suggest that Slx1-Slx4 cleaves paused replication forks in the rDNA, leading to Rad22-dependent homologous recombination that is used to maintain rDNA copy number.  相似文献   

17.
The PML tumor suppressor has been functionally implicated in DNA damage response and cellular senescence. Direct evidence for such a role based on PML knockdown or knockout approaches is still lacking. We have therefore analyzed the irradiation-induced DNA damage response and cellular senescence in human and mouse fibroblasts lacking PML. Our data show that PML nuclear bodies (NBs) nonrandomly associate with persistent DNA damage foci in unperturbed human skin and in high-dose-irradiated cell culture systems. PML bodies do not associate with transient γH2AX foci after low-dose gamma irradiation. Superresolution microscopy reveals that all PML bodies within a nucleus are engaged at Rad51- and RPA-containing repair foci during ongoing DNA repair. The lack of PML (i) does not majorly affect the DNA damage response, (ii) does not alter the efficiency of senescence induction after DNA damage, and (iii) does not affect the proliferative potential of primary mouse embryonic fibroblasts during serial passaging. Thus, while PML NBs specifically accumulate at Rad51/RPA-containing lesions and senescence-derived persistent DNA damage foci, they are not essential for DNA damage-induced and replicative senescence of human and murine fibroblasts.  相似文献   

18.
Highlights? 53BP1 inhibits BRCA1 recruitment to DSB sites in G1 ? RIF1 is the effector of 53BP1 during DSB repair ? Class-switch recombination requires RIF1 ? RIF1 recruitment to DSB sites in S/G2 is inhibited by BRCA1-CtIP  相似文献   

19.
20.
The Mre11-Rad50-Xrs2 nuclease complex, together with Sae2, initiates the 5′-to-3′ resection of Double-Strand DNA Breaks (DSBs). Extended 3′ single stranded DNA filaments can be exposed from a DSB through the redundant activities of the Exo1 nuclease and the Dna2 nuclease with the Sgs1 helicase. In the absence of Sae2, Mre11 binding to a DSB is prolonged, the two DNA ends cannot be kept tethered, and the DSB is not efficiently repaired. Here we show that deletion of the yeast 53BP1-ortholog RAD9 reduces Mre11 binding to a DSB, leading to Rad52 recruitment and efficient DSB end-tethering, through an Sgs1-dependent mechanism. As a consequence, deletion of RAD9 restores DSB repair either in absence of Sae2 or in presence of a nuclease defective MRX complex. We propose that, in cells lacking Sae2, Rad9/53BP1 contributes to keep Mre11 bound to a persistent DSB, protecting it from extensive DNA end resection, which may lead to potentially deleterious DNA deletions and genome rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号