首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. In Trypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention.  相似文献   

2.
Reticulocyte lysates contain ribosome-bound and free populations of 5S RNA. The free population is sensitive to nuclease cleavage in the internal loop B, at the phosphodiester bond connecting nucleotides A54 and A55. Similar cleavage sites were detected in 5S rRNA in 60S subunits and 80S ribosomes. However, 5S rRNA in reticulocyte polysomes is insensitive to cleavage unless ribosomes are salt-washed. This suggests that a translational factor protects the backbone surrounding A54 from cleavage in polysomes. Upon nuclease treatment of mouse 60S subunits or reticulocyte lysates a small population of ribosomes released its 5S rRNA together with ribosomal protein L5. Furthermore, rRNA sequences from 5.8S, 28S and 18S rRNA were released. In 18S rRNA the sequences mainly originate from the 630 loop and stem (helix 18) in the 5' domain, whereas in 28S rRNA a majority of fragments is derived from helices 47 and 81 in domains III and V, respectively. We speculate that this type of rRNA-fragmentation may mimic a ribosome degradation pathway.  相似文献   

3.
Ribosomal protein L5, a 5S rRNA binding protein in the large subunit, is composed of a five-stranded antiparallel beta-sheet and four alpha-helices, and folds in a way that is topologically similar to the ribonucleprotein (RNP) domain [Nakashima et al., RNA 7, 692-701, 20011. The crystal structure of ribosomal protein L5 (BstL5) from Bacillus stearothermophilus suggests that a concave surface formed by an anti-parallel beta-sheet and long loop structures are strongly involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurred at beta-strands and loop structures in BstL5. The mutation of Lys33 at the beta 1-strand caused a significant reduction in 5S rRNA binding. In addition, the Arg92, Phe122, and Glu134 mutations on the beta2-strand, the alpha3-beta4 loop, and the beta4-beta5 loop, respectively, resulted in a moderate decrease in the 5S rRNA binding affinity. In contrast, mutation of the conserved residue Pro65 at the beta2-strand had little effect on the 5S rRNA binding activity. These results, taken together with previous results, identified Lys33, Asn37, Gln63, and Thr90 on the beta-sheet structure, and Phe77 at the beta2-beta3 loop as critical residues for the 5S rRNA binding. The contribution of these amino acids to 5S rRNA binding was further quantitatively evaluated by surface plasmon resonance (SPR) analysis by the use of BIAcore. The results showed that the amino acids on the beta-sheet structure are required to decrease the dissociation rate constant for the BstL5-5S rRNA complex, while those on the loops are to increase the association rate constant for the BstL5-5S rRNA interaction.  相似文献   

4.
5.
5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.  相似文献   

6.
Prior to ribosome assembly, 5S ribosomal RNA (5S rRNA) binds to ribosomal protein L5 to form a stable ribonucleoprotein particle (5S RNP). We have analyzed the role of L5 binding in the nuclear targeting of 5S rRNA inXenopusoocytes, and have compared the nuclear import pathway of 5S RNPs with other karyophilic molecules. Nuclear import ofin vitro-generated 5S RNPs was found to be sensitive to three general inhibitors of nuclear pore complex-mediated translocation: ATP depletion, chilling, and wheat germ agglutinin. The initial rate and extent of net nuclear import was threefold greater with preassembled 5S RNPs than with 5S rRNA microinjected alone, suggesting that L5 binding is a prerequisite for nuclear accumulation. Nuclear import of 5S rRNA/5S RNPs is a facilitated process dependent on limiting factors, since nuclear import exhibited saturation kinetics. Not only was nuclear import of labeled 5S rRNA reduced in the presence of excess unlabeled 5S rRNA, but also in the presence of the synthetic karyophilic protein P(lys)-BSA. In contrast, import was not inhibited by U1 small nuclear RNA (snRNA) or U3 small nucleolar RNA (snoRNA). 5S rRNA/5S RNP nuclear import therefore appears to follow a pathway of molecular interactions similar to many karyophilic proteins, but not the methylguanosine cap-dependent U1 snRNA pathway or the cap-independent U3 snoRNA pathway.  相似文献   

7.
A novel 5S RNA-protein (RNP) complex in human and mouse cells has been analyzed using patient autoantibodies. The RNP is small (approximately 7S) and contains most of the nonribosome-associated 5S RNA molecules in HeLa cells. The 5S RNA in the particle is matured at its 3' end, consistent with the results of in vivo pulse-chase experiments which indicate that this RNP represents a later step in 5S biogenesis than a previously described 5S*/La protein complex. The protein moiety of the 5S RNP has been identified as ribosomal protein L5, which is known to be released from ribosomes in a complex with 5S after various treatments of the 60S subunit. Indirect immunofluorescence indicates that the L5/5S complex is concentrated in the nucleolus. L5 may therefore play a role in delivering 5S rRNA to the nucleolus for assembly into ribosomes.  相似文献   

8.
9.
Three 5S rRNA-binding ribosomal proteins (L5, L18, TL5) of extremely thermophilic bacterium Thermus thermophilus have earlier been isolated. Structural analysis of their complexes with rRNA requires identification of their binding sites in the 5S rRNA. Previously, a TL5-binding site has been identified, a TL5-RNA complex crystallized, and its structure determined to 2.3 A. The sites for L5 and L18 were characterized, and two corresponding 5S rRNA fragments constructed. Of these, a 34-nt fragment specifically interacted with L5, and a 55-nt fragment interacted with L5, L18, and with both proteins. The 34-nt fragment-L5 complex was crystallized; the crystals are suitable for high-resolution X-ray analysis.  相似文献   

10.
DiNitto JP  Huber PW 《Biochemistry》2001,40(42):12645-12653
The formation of the Xenopus L5-5S rRNA complex depends on nonelectrostatic interactions. Fluorescence assays with 1-anilino-8-naphthalenesulfonate demonstrate that a hydrophobic region on L5 becomes exposed upon removal of bound 5S rRNA by treatment with ribonucleases. Several conserved aromatic amino acids, mostly tyrosines, were identified by comparative sequence analysis and changed individually to alanine. Substitution with alanine at any of three positions, Y86, Y99, or Y226, essentially abolishes RNA-binding activity, whereas those made at Y95 and Y207 have more modest effects. Replacement with phenylalanine at Y86 and Y226 does not change binding affinity, indicating that the aromatic ring of the side chain, not the hydroxyl group, is the critical functionality for binding. Alternatively, the phenolic hydroxyls at Y99 and Y207 do contribute to binding. The structural integrity of the mutant proteins was assessed using thermal denaturation and limited digestion with proteases. The T(m) of Y99A is 10 degrees C lower than that of the wild-type protein, and there are some differences in the protease digestion patterns that together indicate the structure of this mutant has been significantly perturbed. The structures of the other variants are not detectably different from the wild-type protein. These results provide evidence that intermolecular stacking interactions involving at least two tyrosine residues, Y86 and Y226, are necessary for formation of the L5-5S rRNA complex and can account, at least in part, for the contribution nonelectrostatic interactions make to the free energy of binding.  相似文献   

11.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

12.
13.
14.
The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.  相似文献   

15.
H Hori  S Osawa 《Bio Systems》1986,19(3):163-172
The secondary structure models of 5S rRNA have been constructed from the primary structure of 352 5S rRNA species available at present. All the 5S rRNAs examined can take essentially the same secondary structure, however they reveal characteristic differences between eukaryotes, metabacteria (= archaebacteria) and eubacteria. These three types of models can be further subgrouped by minor but characteristic differences. A phylogenic tree of organisms has been constructed using these 5S rRNA sequences by the weighted pairing method (WPG method). The tree reveals that there exist several major groups of eubacteria which seem to have diverged into different directions in the early stages of bacterial evolution. After emergence of eubacteria, metabacteria and eukaryotes separated from each other from their common ancestor. In the eukaryotic evolution, red algae (Rhodophyta) emerged first, and thereafter, thraustocytrids-Proctista, Ascomycota, green plants (green algae and land plants), Basidiomycota, Chromophyta (brown algae, diatoms and golden-yellow algae), slime- and water molds, various protozoans, and animals emerged in this order.  相似文献   

16.
Ciganda M  Williams N 《PloS one》2012,7(1):e30029
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC.  相似文献   

17.
Kim DF  Green R 《Molecular cell》1999,4(5):859-864
The aminoacyl (A site) tRNA analog 4-thio-dT-p-C-p-puromycin (s4TCPm) photochemically cross-links with high efficiency and specificity to G2553 of 23S rRNA and is peptidyl transferase reactive in its cross-linked state, establishing proximity between the highly conserved 2555 loop in domain V of 23S rRNA and the universally conserved CCA end of tRNA. To test for base-pairing interactions between 23S rRNA and aminoacyl tRNA, site-directed mutations were made at the universally conserved nucleotides U2552 and G2553 of 23S rRNA in both E. coli and B. stearothermophilus ribosomal RNA and incorporated into ribosomes. Mutations at G2553 resulted in dominant growth defects in E. coli and in decreased levels of peptidyl transferase activity in vitro. Genetic analysis in vitro of U2552 and G2553 mutant ribosomes and CCA end mutant tRNA substrates identified a base-pairing interaction between C75 of aminoacyl tRNA and G2553 of 23S rRNA.  相似文献   

18.
J Kimura  M Kimura 《FEBS letters》1987,210(1):85-90
The complete amino acid sequences of the 5 S rRNA binding proteins L5 and L18 isolated from ribosomes of the moderate thermophile Bacillus stearothermophilus are presented. This has been achieved by the sequence analysis of peptides derived by enzymatic digestions with trypsin, chymotrypsin, pepsin, and Staphylococcus aureus protease, as well as by chemical cleavage with cyanogen bromide. The proteins L5 and L18 consist of 179 and 120 amino acid residues, and have Mr values of 20,163 and 13,473, respectively. A comparison of the sequences with their counterparts from the Escherichia coli ribosome reveals 59% identical residues for L5, and 53% for L18. For both proteins, the distribution of conserved regions is not random along the protein chains: some regions are highly conserved while others are not. The regions which are conserved during evolution may be important for the interaction with the 5 S rRNA molecule.  相似文献   

19.
20.
本文用化学降解和核糖核酸酶降解凝胶电泳直读法,测定了广西蚕业指导所用人工授精方法获得的蓖麻蚕(Philosamia cynthia ricini♂)和家蚕(Bombyx mori ♀,)的杂交第六代个体(具有花斑)的5SrRNA的一级结构。以同法测定了其母本家蚕5S rRNA的一级结构。结果见到两者一样,说明杂交蚕的 5S rRNA基因来自母本。它们的结构与Komiya等(1981)测定的未知品种家蚕5S rRNA有二个核苷酸的差别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号