首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A novel adenovirus system for analyzing the adenovirus entry pathway has been developed that contains green fluorescent protein bound to the encapsidated viral DNA (AdLite viruses). AdLite viruses enter host cells and accumulate around the nuclei and near the microtubule organizing centers (MTOC). In live cells, individual AdLite particles were observed trafficking both toward and away from the nucleus. Depolymerization of microtubules during infection prevented AdLite accumulation around the MTOC; however, it did not abolish perinuclear localization of AdLite particles. Furthermore, depolymerization of microtubules did not affect AdLite motility and did not affect gene expression from wild-type adenovirus and adenovirus-derived vectors. These data revealed that adenovirus intracellular motility and nuclear targeting can be supported by a mechanism that does not rely on the microtubule network.  相似文献   

2.
Adenoviruses (Ads) utilize host cell microtubules to traverse the intracellular space and reach the nucleus in a highly efficient manner. Previous studies have shown that Ad infection promotes the formation of stable, posttranslationally modified microtubules by a RhoA-dependent mechanism. Ad infection also shifts key parameters of microtubule dynamic instability by a Rac1-dependent mechanism, resulting in microtubules with lower catastrophe frequencies, persistent growth phases, and a bias toward net growth compared to microtubules in uninfected cells. Until now it was unclear whether changes in RhoGTPase activity or microtubule dynamics had a direct impact on the efficiency of Ad microtubule-dependent nuclear localization. Here we have performed synchronous Ad infections and utilized confocal microscopy to analyze the individual contributions of RhoA activation, Rac1 activation, microtubule stability, dynamic behavior, and posttranslational modifications on Ad nuclear localization efficiency (NLE). We found that drug-induced suppression of microtubule dynamics impaired Ad NLE by disrupting the radial organization of the microtubule array. When the microtubule array was maintained, the suppression or enhancement of microtubule turnover did not significantly affect Ad NLE. Furthermore, RhoA activation or the formation of acetylated microtubules did not enhance Ad NLE. In contrast, active Rac1 was required for efficient Ad nuclear localization. Because Rac1 mediates persistent growth of microtubules to the lamellar regions of cells, we propose that Ad-induced activation of Rac1 enhances the ability of microtubules to "search and capture" incoming virus particles.  相似文献   

3.
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.  相似文献   

4.
Adenovirus serotypes 2 and 5 are taken into cells by receptor-mediated endocytosis, and following release from endosomes, destabilized virions travel along microtubules to accumulate around the nucleus. The entry process culminates in delivery of the viral genome through nuclear pores. This model is based on studies with conventional cell lines, such as HeLa and HEp-2, but in HEK293 cells, which are routinely used in this laboratory because they are permissive for replication of multiple adenovirus serotypes, a different trafficking pattern has been observed. Nuclei of 293 cells have an irregular shape, with an indented region, and virions directly labeled with carboxyfluorescein accumulate in a cluster within that indented region. The clusters, which form in close proximity to the microtubule organizing center (MTOC) and to the Golgi apparatus, are remarkably stable; a fluorescent signal can be seen in the MTOC region up to 16 h postinfection. Furthermore, if cells are infected and then undergo mitosis after the cluster is formed, the signal is found at each spindle pole. Despite the sequestration of virions near the MTOC, 293 cells are no less sensitive than other cells to productive infection with adenovirus. Even though cluster formation depends on intact microtubules, infectivity is not compromised by disruption of microtubules with either nocodazole or colchicine, as determined by expression of an enhanced green fluorescent protein reporter gene inserted in the viral genome. These results indicate that virion clusters do not represent the infectious pathway and suggest an alternative route to the nucleus that does not depend on nocodazole-sensitive microtubules.  相似文献   

5.
During vertebrate gastrulation, convergence and extension cell movements are coordinated with the anteroposterior and mediolateral embryonic axes. Wnt planar cell polarity (Wnt/PCP) signaling polarizes the motile behaviors of cells with respect to the anteroposterior embryonic axis. Understanding how Wnt/PCP signaling mediates convergence and extension (C&E) movements requires analysis of the mechanisms employed to alter cell morphology and behavior with respect to embryonic polarity. Here, we examine the interactions between the microtubule cytoskeleton and Wnt/PCP signaling during zebrafish gastrulation. First, we assessed the location of the centrosome/microtubule organizing center (MTOC) relative to the cell nucleus and the body axes, as a marker of cell polarity. The intracellular position of MTOCs was polarized, perpendicular to the plane of the germ layers, independently of Wnt/PCP signaling. In addition, this position became biased posteriorly and medially within the plane of the germ layers at the transition from mid- to late gastrulation and from slow to fast C&E movements. This depends on intact Wnt/PCP signaling through Knypek (Glypican4/6) and Dishevelled components. Second, we tested whether microtubules are required for planar cell polarization. Once the planar cell polarity is established, microtubules are not required for accumulation of Prickle at the anterior cell edge. However, microtubules are needed for cell-cell contacts and initiation of its anterior localization. Reciprocal interactions occur between Wnt/PCP signaling and microtubule cytoskeleton during C&E gastrulation movements. Wnt/PCP signaling influences the polarity of the microtubule cytoskeleton and, conversely, microtubules are required for the asymmetric distribution of Wnt/PCP pathway components.  相似文献   

6.
Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus replication. We show here, by confocal immunofluorescence and electron microscopy, that the changes in morphology of FMDV-infected cells involve changes in the distribution of microtubule and intermediate filament components during infection. Despite the continued presence of centrosomes in infected cells, there is a loss of tethering of microtubules to the microtubule organizing center (MTOC) region. Loss of labeling for gamma-tubulin, but not pericentrin, from the MTOC suggests a targeting of gamma-tubulin (or associated proteins) rather than a total breakdown in MTOC structure. The identity of the FMDV protein(s) responsible was determined by the expression of individual viral nonstructural proteins and their precursors in uninfected cells. We report that the only viral nonstructural protein able to reproduce the loss of gamma-tubulin from the MTOC and the loss of integrity of the microtubule system is FMDV 3C(pro). In contrast, infection of cells with another picornavirus, bovine enterovirus, did not affect gamma-tubulin distribution, and the microtubule network remained relatively unaffected.  相似文献   

7.
Capsids and the enclosed DNA of adenoviruses, including the species C viruses adenovirus type 2 (Ad2) and Ad5, and herpesviruses, such as herpes simplex virus type 1 (HSV-1), are targeted to the nuclei of epithelial, endothelial, fibroblastic, and neuronal cells. Cytoplasmic transport of fluorophore-tagged Ad2 and immunologically detected HSV-1 capsids required intact microtubules and the microtubule-dependent minus-end-directed motor complex dynein-dynactin. A recent study with epithelial cells suggested that Ad5 was transported to the nucleus and expressed its genes independently of a microtubule network. To clarify the mechanisms by which Ad2 and, as an independent control, HSV-1 were targeted to the nucleus, we treated epithelial cells with nocodazole (NOC) to depolymerize microtubules and measured viral gene expression at different times and multiplicities of infections. Our results indicate that in NOC-treated cells, viral transgene expression was significantly reduced at up to 48 h postinfection (p.i.). A quantitative analysis of subcellular capsid localization indicated that NOC blocked the nuclear targeting of Ad2 and also HSV-1 by more than 90% at up to 7 h p.i. About 10% of the incoming Texas Red-coupled Ad2 (Ad2-TR) was enriched at the nucleus in microtubule-depleted cells at 5 h p.i. This result is consistent with earlier observations that Ad2-TR capsids move randomly in NOC-treated cells at less than 0.1 micro m/s and over distances of less than 5 micro m, characteristic of Brownian motion. We conclude that fluorophore-tagged Ad2 and HSV-1 particles are infectious and that microtubules play a prominent role in efficient nuclear targeting during entry and gene expression of species C Ads and HSV-1.  相似文献   

8.
Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.  相似文献   

9.
Regulation of cell polarity is a process observed in all cells. During directed migration, cells orientate their microtubule cytoskeleton and the microtubule-organizing-center (MTOC), which involves integrins and downstream Cdc42 and glycogen synthase kinase-3beta activity. However, the contribution of G protein-coupled receptor signal transduction for MTOC polarity is less well understood. Here, we report that the heterotrimeric Galpha(12) and Galpha(13) proteins are necessary for MTOC polarity and microtubule dynamics based on studies using Galpha(12/13)-deficient mouse embryonic fibroblasts. Cell polarization involves the Galpha(12/13)-interacting leukemia-associated RhoGEF (LARG) and the actin-nucleating diaphanous formin mDia1. Interestingly, LARG associates with pericentrin and localizes to the MTOC and along microtubule tracks. We propose that Galpha(12/13) proteins exert essential functions linking extracellular signals to microtubule dynamics and cell polarity via RhoGEF and formin activity.  相似文献   

10.
Although PKC plays a major role in regulating the morphology and function of the cytoskeleton, little is known about in situ associations of specific isoforms with the cytoskeleton. We demonstrate that seven PKC isoforms are expressed in B16F10 melanoma cells and show different levels of induction by serum. Using cell cytoskeleton preparations (CSKs), confocal microscopy, and immunocytochemistry, all isoforms show specific patterns of localization to focal contact-like structures (alpha, delta), very small cytoplasmic granules/vesicles (all isoforms), dense ordered arrays of small granules in the perinuclear region (alpha, delta), granules/vesicles associated with a homogeneous framework in the cytoplasm adjacent to the nucleus (gamma), or irregular-shaped patches of granules at or near the nuclear perimeter (eta, theta). In addition, several isoforms are present as cytoplasmic granules/ vesicles in linear or curvilinear arrays (alpha, delta, epsilon, theta). When isoform localization is examined using 3.7% formaldehyde or methanol:acetone, the patterns of localization in CSKs are often difficult or impossible to detect, and many are described here for the first time. Double-labeling experiments with CSK demonstrate that PKC actin co-localizes with punctate alpha-rich particles above the nucleus, granules of epsilon throughout the cytoplasm, and with theta in irregular-shaped aggregates associated with the nucleus. Vimentin co-localizes with perinuclear granules of delta and beta(2), and alpha-tubulin co-localizes with theta in structures at or near the nuclear surface and in microtubules associated with the microtubule organizing center (MTOC). In summary, the present study demonstrates that seven PKC isoforms are endogenously expressed in B16F10 melanoma cells. These isoforms show various levels of induction by serum and specific patterns of association with various components of the detergent-resistant cell cytoskeleton.  相似文献   

11.
We examined cytoplasmic trafficking and nuclear translocation of adeno-associated virus type 2 (AAV) by using Alexa Fluor 488-conjugated wild-type AAV, A20 monoclonal antibody immunocytochemistry, and subcellular fractionation techniques followed by DNA hybridization. Our results indicated that in the absence of adenovirus (Ad), AAV enters the cell rapidly and escapes from early endosomes with a t(1/2) of about 10 min postinfection. Cytoplasmically distributed AAV accumulated around the nucleus and persisted perinuclearly for 16 to 24 h. Viral uncoating occurred before or during nuclear entry beginning about 12 h postinfection, when viral protein and DNA were readily detected in the nucleus. Few, if any, intact AAV capsids were found in the nucleus. In the presence of Ad, however, cytoplasmic AAV quickly translocated into the nucleus as intact particles as early as 40 min after coinfection, and this facilitated nuclear translocation of AAV was not blocked by the nuclear pore complex inhibitor thapsigargan. The rapid nuclear translocation of intact AAV capsids in the presence of Ad suggested that one or more Ad capsid proteins might be altering trafficking. Indeed, coinfection with empty Ad capsids also resulted in the appearance of AAV DNA in nuclei within 40 min. Escape from early endosomes did not seem to be affected by Ad coinfection.  相似文献   

12.
In mammalian cells the centrosome or diplosome is defined by the two parental centrioles observed in electron microscopy and by the pericentriolar material immunostained with several antibodies directed against various centrosomal proteins (gamma-tubulin, pericentrin, centrin and centractin). Partial destabilization of the microtubule cytoskeleton by microtubule-disassembling substances induced a splitting and a slow migration of the two diplosome units to opposite nuclear sides during most of the interphase in several mammalian cell lines. These units relocated close together following drug removal, while microtubule stabilization by nM taxol concentrations inhibited this process. Cytochalasin slowed down diplosome splitting but did not affect its relocation after colcemid washing. These results account for the apparently opposite effects induced by microtubule poisons on centriole separation. Moreover, they provide new information concerning the centrosome cycle and stability. First, the centrosome is formed by two units, distinguished only by the number of attached stable microtubules, but not by pericentrin, gamma-tubulin, centrin and centractin and their potency to nucleate microtubules. Second, the centrosomal units are independent during most of the interphase. Third, according to the cell type, these centrosomal units are localized in close proximity because they are either linked or maintained close together by the normal dynamics of the microtubule cytoskeleton. Finally, the relocalization of the centrosomal units with their centrioles in cells possessing one or two centrosomes suggests that their relative position results from the overall tensional forces involving at least partially the microtubule arrays nucleated by each of these entities.  相似文献   

13.
A I Radchenko 《Tsitologiia》1987,29(4):404-409
The intermediate cell is a third definitely outlined morpho-functional type of cells within sarcocysts, in addition to the two other well known ones--metrocytes and merozoites (Fedoseenko, Levit, 1979; Beyer et al., 1981). The intermediate cell divides by endodyogeny, the nuclear division being accomplished by semi-closed pleuromitosis. In the dividing nuclei, centrioles and extranuclear bundle of microtubules connecting two pairs of centrioles are seen in addition to centrocones and associated semi-spindles. Pro-, ana- and telophases of mitosis have been followed. The microtubule organizing center (MTOC) seen in the cytoplasm of the intermediate cell is represented by the polar ring with microtubules originating from it. The MTOC is involved in the division of both the nucleus and the cytoplasm. The formation of the polar ring (MTOC) from the Golgi-adjunct has been first discovered and followed in the course of the intermediate cell division.  相似文献   

14.
Following receptor binding and internalization, intracellular trafficking of adenovirus (Ad) among subgroups B and C is different, with significant amounts of Ad serotype 7 (Ad7) (subgroup B) virions found in cytoplasm during the initial hours of infection while Ad5 (subgroup C) virions rapidly translocate to the nucleus. To evaluate the role of the fiber in these differences, we examined intracellular trafficking of Ad5, Ad7, and Ad5f7 (a chimeric vector composed of the Ad5 capsid with the fiber replaced by the Ad7 fiber) by conjugating Ad capsids directly with Cy3 fluorescent dye, permitting the trafficking of the capsids to be examined by fluorescence microscopy. The human lung carcinoma cell line A549 was infected with Cy3-conjugated viruses for 10 min followed by a 1-h incubation. Ad5 virions rapidly translocated to the nucleus (within 1 h of infection), while Ad7 virions were widely distributed in the cytoplasm at the same time point. Interestingly, chimeric Ad5f7 virions behaved similarly to Ad7 but not Ad5. In this regard, the percentages of nuclear localization of Ad5, Ad7, and Ad5f7 at 1 h following infection were 72% +/- 4%, 32% +/- 6%, and 38% +/- 2%, respectively. Consistent with these observations, fluorescence in situ hybridization demonstrated that most of the Ad5 DNA was detected at the nucleus after 1 h, but at the same time point, DNA of Ad7 and Ad5f7 was distributed in both the nucleus and cytoplasm. Quantification of the kinetics of Ad genomic DNA delivery to the nucleus using a fluorogenic probe-based PCR assay (TaqMan PCR) demonstrated that the percentages of nuclear association of Ad5 DNA and Ad5f7 DNA at 1 h postinfection were 80% +/- 13% and 43% +/- 1%, respectively. Although it has been generally accepted that Ad fiber protein mediates attachment of virions to cells and that fibers dissociate during endocytic uptake, these data suggest that in addition to mediating binding to the cell surface, fiber likely modulates intracellular trafficking as well.  相似文献   

15.
CDC25B has been demonstrated to activate the complex of CDK1/Cyclin B and trigger mitosis. We have recently demonstrated that p‐CDC25B‐Ser351 is located at the centrosomes of mouse oocytes and contributes to the release of mouse oocytes from prophase I arrest. But much less is known about CDC25B function at the centrosome in two‐cell stage mouse embryos. Here we investigate the effect of CDC25B regulating the microtubules nucleation. Microinjection of anti‐CDC25B antibody caused aberrant microtubule nucleation. In addition, embryos injected with anti‐CDC25B antibody showed the marked absence of microtubule repolymerization and Nek2 foci after nocodazole washout. CDC25B overexpression caused microtubule‐organizing center (MTOC) overduplication. Moreover, overexpression of CDC25B–?65 mutant resulted in the loss of CDC25B localization in the perinuclear region and made CDC25B less efficient in inducing mitosis. We additionally identified that CDC25B is responsible for the pericentrin localization to the MTOC. Our data suggest an important role of CDC25B for microtubule nucleation and organization. N‐terminal of CDC25B is required for regulating the microtubule dynamics and mitotic function.  相似文献   

16.
Anti-tubulin immunofluorescence and laser-scanning confocal microscopy were used to examine microtubule organization during Xenopus oogenesis (Dumont stages I-VI). Stage I oocytes contained a poorly ordered microtubule array, characterized by concentrations of microtubule in the cortex, surrounding the germinal vesicle, and associated with the mitochondrial mass. No focus of microtubule organization was detectable by optical sectioning or in microtubule regrowth experiments, suggesting that stage I oocytes lack a functional MTOC. The microtubule array becomes progressively more complex and polarized during oogenesis; an extensive array of microtubules and microtubule bundles was apparent in the animal hemisphere of stage VI oocytes, and a less ordered array was observed in the vegetal hemisphere. A dense network of microtubules surrounded the germinal vesicle, apparently extending from a tubulin- and microtubule-rich region of cytoplasm adjacent to the vegetal surface of the GV. The organization of microtubules in normal oocytes, in oocytes recovering from cold-induced microtubule depolymerization, and in enucleated oocytes, suggested that the germinal vesicle serves as an MTOC in stage VI oocytes. Antibodies to acetylated alpha-tubulin revealed numerous acetylated, presumably stable, microtubules in stage I and stage VI oocytes. The array of oocyte microtubules thus might function as a stable framework for the localization of developmentally important molecules and organelles during oogenesis.  相似文献   

17.
Lamin A/C is a major constituent of the nuclear lamina, a thin filamentous protein layer that lies beneath the nuclear envelope. Here we show that lamin A/C deficiency in mouse embryonic fibroblasts (Lmna(-/-) MEFs) diminishes the ability of these cells to polarize at the edge of a wound and significantly reduces cell migration speed into the wound. Moreover, lamin A/C deficiency induces significant separation of the microtubule organizing center (MTOC) from the nuclear envelope. Investigations using ballistic intracellular nanorheology reveal that lamin A/C deficiency also dramatically affects the micromechanical properties of the cytoplasm. Both the elasticity (stretchiness) and the viscosity (propensity of a material to flow) of the cytoplasm in Lmna(-/-) MEFs are significantly reduced. Disassembly of either the actin filament or microtubule networks in Lmna(+/+) MEFs results in decrease of cytoplasmic elasticity and viscosity down to levels found in Lmna(-/-) MEFs. Together these results show that both the mechanical properties of the cytoskeleton and cytoskeleton-based processes, including cell motility, coupled MTOC and nucleus dynamics, and cell polarization, depend critically on the integrity of the nuclear lamina, which suggest the existence of a functional mechanical connection between the nucleus and the cytoskeleton. These results also suggest that cell polarization during cell migration requires tight mechanical coupling between MTOC and nucleus, which is mediated by lamin A/C.  相似文献   

18.
Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran‐mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC‐ and Ran‐mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo‐like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC‐ and Ran‐mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.  相似文献   

19.
Locomoting cells are characterized by a pronounced external and internal anterior-posterior polarity. One of the events associated with cell polarization at the onset of locomotion is a shift of the centrosome, or MTOC, ahead of the nucleus. This position is believed to be of strategic importance for directional cell movement and cell polarity. We have used BSC-1 cells at the edge of an in vitro wound to clarify the causal relationship between MTOC position and the initiation of cell polarization. We find that pronounced cell polarization (the extension of a lamellipod) can take place in the absence of MTOC repositioning or microtubules. Conversely, MTOCs will reposition even after lamellar extension and cell polarization have occurred. Repositioning requires microtubules that extend to the cell periphery and is independent of selective detyrosination of microtubules extending towards the cell front. Significantly, MTOCs maintain, or at least attempt to maintain, a position at the cell's centroid. This is most clearly demonstrated in wounded monolayers of enucleated cells where the MTOC closely follows the centroid position. We suggest that the primary response to the would is the biased extension of a lamellipod, which can occur in the absence of microtubules and MTOC repositioning. Lamellipod extension leads to a shift of the cell's centroid towards the wound. The MTOC, in an attempt to maintain a position near the cell center, will follow. This will automatically put the MTOC ahead of the nucleus in the vast majority of cells. The nucleus as a reference for MTOC position may not be as meaningful as previously thought.  相似文献   

20.
Photoreceptor nuclei in the Drosophila eye undergo developmentally regulated migrations. Nuclear migration is known to require the perinuclear protein Klarsicht, but the function of Klarsicht has been obscure. Here, we show that Klarsicht is required for connecting the microtubule organizing center (MTOC) to the nucleus. In addition, in a genetic screen for klarsicht-interacting genes, we identified Lam Dm(0), which encodes nuclear lamin. We find that, like Klarsicht, lamin is required for photoreceptor nuclear migration and for nuclear attachment to the MTOC. Moreover, perinuclear localization of Klarsicht requires lamin. We propose that nuclear migration requires linkage of the MTOC to the nucleus through an interaction between microtubules, Klarsicht, and lamin. The Klarsicht/lamin interaction provides a framework for understanding the mechanistic basis of human laminopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号